UJI ANTIBAKTERI EKSTRAK BATANG GAHARU (Aquilaria malaccensis) BERBASIS KOLIN KLORIDA:ASAM SITRAT TERHADAP Bacillus cereus dan Shigella dysenteriae

  • Nahrul Hasan Jurusan Farmasi, Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Sri Marlina Program Studi Sarjana Farmasi, Institut Kesehatan Mitra Bunda, Batam, Indonesia
  • Ayu Amelia Program Studi Pendidikan Profesi Apoteker, Institut Kesehatan Mitra Bunda, Batam, Indonesia
  • Ghalib Syukrillah Syahputra Program Studi Sarjana Farmasi, Institut Kesehatan Mitra Bunda, Batam, Indonesia
  • Diani Mega Sari Program Studi Sarjana Farmasi, Institut Kesehatan Mitra Bunda, Batam, Indonesia
Keywords: antibacterial, NADES, UAE, gaharu, Bacillus cereus, Shigella dysenteriae

Abstract

Infections caused by Bacillus cereus and Shigella dysenteriae are serious health problems as they can lead to gastrointestinal disorders and contribute to the emergence of antibiotic resistance. One potential strategy to overcome this challenge is the discovery of new antibacterial agents derived from natural sources, such as agarwood (Aquilaria malaccensis). This study aimed to evaluate the antibacterial activity of gaharu stem extract using a Natural Deep Eutectic Solvent (NADES) composed of choline chloride and citric acid through the Ultrasound Assisted Extraction (UAE) method. The antibacterial assay was performed using the disc diffusion method with various NADES ratios (1:1, 2:1, 1:2, 1:3, 1:4, and 4:1 g/g), with chloramphenicol as the positive control and 10% DMSO as the negative control. The results indicated that the NADES extract with a 1:4 g/g ratio produced the largest inhibition zones against Bacillus cereus and Shigella dysenteriae. Moreover, the Minimum Inhibitory Concentration (MIC) test showed that the 1:4 NADES extract effectively inhibited bacterial growth at a concentration of 30%. These findings suggest that gaharu stem extract prepared with NADES is a promising, eco-friendly, and potent antibacterial agent.

References

Abd Rashed, A., Jamilan, M. A., Abdul Rahman, S., Amin Nordin, F. D., & Mohd Nawi, M. N. (2024). The Therapeutic Potential of Agarwood as an Antimicrobial and Anti-Inflammatory Agent: A Scoping Review. Antibiotics, 13(11), 1074. https://doi.org/10.3390/antibiotics13111074

Acosta-Vega, L., Cifuentes, A., Ibáñez, E., & Galeano Garcia, P. (2025). Exploring Natural Deep Eutectic Solvents (NADES) for Enhanced Essential Oil Extraction: Current Insights and Applications. Molecules, 30(2), 284. https://doi.org/10.3390/molecules30020284

Agustina, E., Andiarna, F., Lusiana, N., Purnamasari, R., & Hadi, Moch. I. (2018). Identifikasi Senyawa Aktif dari Ekstrak Daun Jambu Air (Syzygium aqueum) dengan Perbandingan Beberapa Pelarut pada Metode Maserasi. Biotropic : The Journal of Tropical Biology, 2(2), 108–118. https://doi.org/10.29080/biotropic.2018.2.2.108-118

Ali, M. A., Kaium, M. A., Uddin, S. N., Uddin, M. J., Olawuyi, O., Campbell, A. D., Saint-Louis, C. J., & Halim, M. A. (2023). Elucidating the Structure, Dynamics, and Interaction of a Choline Chloride and Citric Acid Based Eutectic System by Spectroscopic and Molecular Modeling Investigations. ACS Omega, 8(41), 38243–38251. https://doi.org/10.1021/acsomega.3c04570

Anastas, P. T., & Warner, J. C. (2000). Green Chemistry: Theory and Practice. Oxford University Press. https://doi.org/10.1093/oso/9780198506980.001.0001

Aqmarina Nasution, A., Siregar, U. J., Miftahudin, & Turjaman, M. (2020). Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii. Journal of Forestry Research, 31(4), 1371–1380. https://doi.org/10.1007/s11676-018-00875-9

Aslam, A., Hashmi, M. F., & Okafor, C. N. (2025). Shigellosis.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Cannavacciuolo, C., Pagliari, S., Frigerio, J., Giustra, C. M., Labra, M., & Campone, L. (2022). Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods, 12(1), 56. https://doi.org/10.3390/foods12010056

Carreira-Casais, A., Otero, P., Garcia-Perez, P., Garcia-Oliveira, P., Pereira, A. G., Carpena, M., Soria-Lopez, A., Simal-Gandara, J., & Prieto, M. A. (2021). Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. International Journal of Environmental Research and Public Health, 18(17), 9153. https://doi.org/10.3390/ijerph18179153

Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

Cowan, M. M. (1999). Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564

Cushnie, T. P. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38(2), 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014

Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019

Duan, L., Dou, L.-L., Guo, L., Li, P., & Liu, E.-H. (2016). Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustainable Chemistry & Engineering, 4(4), 2405–2411. https://doi.org/10.1021/acssuschemeng.6b00091

Eissa, M. A., Hashim, Y. Z. H.-Y., Abdul Azziz, S. S. S., Salleh, H. Mohd., Isa, M. L. Md., Abd Warif, N. M., Abdullah, F., Ramadan, E., & El-Kersh, D. M. (2022). Phytochemical Constituents of Aquilaria malaccensis Leaf Extract and Their Anti-Inflammatory Activity against LPS/IFN-γ-Stimulated RAW 264.7 Cell Line. ACS Omega, 7(18), 15637–15646. https://doi.org/10.1021/acsomega.2c00439

García-Roldán, A., Piriou, L., & Jauregi, P. (2023). Natural deep eutectic solvents as a green extraction of polyphenols from spent coffee ground with enhanced bioactivities. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1072592

Gawali, V., Vikas, G. B., Mahesh, B., Nilam, D. B., Yogita, T. S., & Gawali Vikas, C. B. (2018). Development and evaluation of polyhebral powder formulation as energy booster. Journal of Pharmacognosy and Phytochemistry, 7(3). https://www.researchgate.net/publication/338188915

Grozdanova, T., Trusheva, B., Alipieva, K., Popova, M., Dimitrova, L., Najdenski, H., Zaharieva, M. M., Ilieva, Y., Vasileva, B., Miloshev, G., Georgieva, M., & Bankova, V. (2020). Extracts of medicinal plants with natural deep eutectic solvents: enhanced antimicrobial activity and low genotoxicity. BMC Chemistry, 14(1), 73. https://doi.org/10.1186/s13065-020-00726-x

Hasan, N., Rachmayanti, A. S., & Masaenah, E. (2022). Antibacterial activity test of meniran herb extract (Phyllanthus Niruri L.) against staphylococcus epidermidis and klebsiella pneumoniae. In Science Midwifery (Vol. 10, Issue 5). Online. www.midwifery.iocspublisher.orgJournalhomepage:www.midwifery.iocspublisher.org

Hayyan, M., Mbous, Y. P., Looi, C. Y., Wong, W. F., Hayyan, A., Salleh, Z., & Mohd-Ali, O. (2016). Natural deep eutectic solvents: cytotoxic profile. SpringerPlus, 5(1), 913. https://doi.org/10.1186/s40064-016-2575-9

Indrayanto, G. (2022). The importance of method validation in herbal drug research. Journal of Pharmaceutical and Biomedical Analysis, 214, 114735. https://doi.org/10.1016/j.jpba.2022.114735

Jauregi, P., Esnal-Yeregi, L., & Labidi, J. (2024). Natural deep eutectic solvents (NADES) for the extraction of bioactives: emerging opportunities in biorefinery applications. PeerJ Analytical Chemistry, 6, e32. https://doi.org/10.7717/peerj-achem.32

Kotloff, K. L., Platts-Mills, J. A., Nasrin, D., Roose, A., Blackwelder, W. C., & Levine, M. M. (2017). Global burden of diarrheal diseases among children in developing countries: Incidence, etiology, and insights from new molecular diagnostic techniques. Vaccine, 35(49), 6783–6789. https://doi.org/10.1016/j.vaccine.2017.07.036

Lavilla, I., & Bendicho, C. (2017). Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds: From Plants to Drug Development. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809380-1.00011-5

Matuschek, E., Brown, D. F. J., & Kahlmeter, G. (2014). Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4), O255–O266. https://doi.org/10.1111/1469-0691.12373

McDowell, R. H., Sands, E. M., & Friedman, H. (2025). Bacillus Cereus. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/pubmed/30497598

Ministry of Health Republic Indonesia. (2017). Farmakope Herbal Indonesia (II). Ministry of Health Republic Indonesia.

Misrahanum, M., Zahira, A. D., & Saidi, N. (2022). Uji Aktivitas Antibakteri Ekstrak Etanol Daun Gaharu (Aquilaria Malaccensis Lamk.) Dan Identifikasi Senyawa Dengan Metode GC-MS. Jurnal Pharmascience, 9(2), 310–318. https://ppjp.ulm.ac.id/journal/index.php/pharmascience

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451

Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustainable Chemistry & Engineering, 2(5), 1063–1071. https://doi.org/10.1021/sc500096j

Rahman, M. K., Fachriyah, E., & Kusrini, D. (2023). Ekstraksi Daun Salam Berbasis Natural Deep Eutectic Solvent dan Pemanfaatannya sebagai Antioksidan. Greensphere: Journal of Environmental Chemistry, 2(2), 7–12. https://doi.org/10.14710/gjec.2022.16569

World Health Organization. (2020). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

World Health Organization. (2022). Global Antimicrobial Resistance Surveillance System (GLASS) Report 2022.

Zhang, J.-H., Chung, T. D. Y., & Oldenburg, K. R. (1999). A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. SLAS Discovery, 4(2), 67–73. https://doi.org/10.1177/108705719900400206

Published
2025-06-30