Classification of Tulungagung Batik Images in Comparison of Convolution Neural Network and Vision Transformer Algorithms

Author's Country: Indonesia

Authors

DOI:

https://doi.org/10.36805/84twwe32

Keywords:

Batik Tulungagung, CNN, VGG16, Vision Transformer, DeiT

Abstract

Batik is a significant Indonesian cultural heritage with a vast diversity of motifs, making manual classification a challenging task. This research provides a comparative analysis of two prominent deep learning architectures, the Convolutional Neural Network (CNN), represented by VGG16, and the Vision Transformer (ViT), represented by DeiT, for the classification of Tulungagung batik images. A balanced dataset of 2,400 images, comprising two classes (Bangoan and Majanan), was utilized. The experiment was conducted using three distinct training-to-testing split ratios (80:20, 70:30, and 60:40) to evaluate model robustness. Performance was assessed using accuracy, precision, recall, F1-score, and the confusion matrix. The results indicate that the CNN (VGG16) model consistently outperformed the ViT (DeiT), achieving its peak accuracy of 96% on both the 80:20 and 60:40 split ratios, showcasing high stability. The ViT (DeiT) model was more sensitive to the data split, reaching a peak accuracy of 94% with less consistent performance. We conclude that for this specific classification task, the VGG16 architecture is more robust, stable, and effective than the DeiT architecture.

Downloads

Download data is not yet available.

References

[1] H. R. Fidiastuti, A. S. Lathifah, M. Amin, and Y. Utomo, “Isolasi dan Karakterisasi Bakteri Indigen Pengurai Lemak pada Limbah Cair Batik Tulungagung,” Bioeksperimen: Jurnal Penelitian Biologi, vol. 6, no. 1, pp. 29–35, Mar. 2020, doi: 10.23917/ bioeksperimen.v6i1.10430.

[2] Ò. Lorente, I. Riera, and A. Rana, “Image Classification with Classic and Deep Learning Techniques,” May 2021.

[3] D. Achmad, O. V. Putra, and D. Muriyatmoko, “Image classification of leaf disease in corn plants (Zea Mays L.) using the MobileNetV2 method,” Journal of Information System and Application Development, vol. 2, no. 2, pp. 122–132, Sep. 2024, doi: 10.26905/jisad.v2i2.14004.

[4] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Apr. 2015, [Online]. Available: http://arxiv.org/abs/1409.1556

[5] A. Pangestu, B. Purnama, and R. Risnandar, “Vision Transformer untuk Klasifikasi Kematangan Pisang,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 75–84, Feb. 2024, doi: 10.25126/jtiik.20241117389.

[6] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” Dec. 2020.

[7] L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “KLASIFIKASI CITRA MOTIF BATIK BANYUWANGI MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,” Jurnal Teknoinfo, vol. 17, no. 1, p. 203, Jan. 2023, doi: 10.33365/jti.v17i1.2342.

[8] Meranggi, D. G. T., Yudistira, N., & Sari, Y. A. (2022). Batik classification using convolutional neural network with data improvements. JOIV: International Journal on Informatics Visualization, 6(1), 6-11.

[9] Rangkuti, A. H., Harjoko, A., & Putra, A. (2021). A novel reliable approach for image batik classification that invariant with scale and rotation using MU2ECS-LBP algorithm. Procedia Computer Science, 179, 863-870.

[10] Winarno, E., Solichan, A., Ramdani, A. P., Hadikurniawati, W., Septiarini, A., & Hamdani, H. (2025). Enhanced Semarang batik classification using deep learning: a comparative study of CNN architectures. Bulletin of Electrical Engineering and Informatics, 14(5), 3544-3557.

[11] Elvitaria, L., Ahmad, E. F., Samsudin, N. A., Khalid, S. K. A., & Indra, Z. (2025). An Improved Okta-Net Convolutional Neural Network Framework for Automatic Batik Image Classification. JOIV: International Journal on Informatics Visualization, 9(1), 115-119.

[12] Satoto, B. D., Agustiono, W., Ramadhani, N. P., Rafelina, F. L., Rahma, C. A., Hamid, S. B., & Irmawati, B. (2025, November). Classification of batik patterns using graph convolutional networks with data augmentation. In AIP Conference Proceedings (Vol. 3372, No. 1, p. 040001). AIP Publishing LLC.

[13] Fadhilah, H. T., Al Huda, F., & Yudistira, N. (2025, November). Development of Batik Pattern Classification Application Using Convolutional Neural Network Algorithm Using Android-Based Camera. In 2025 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob) (pp. 161-166). IEEE.

[14] Sari, I. P., Elvitaria, L., & Rudiansyah, R. (2025). Data-driven approach for batik pattern classification using convolutional neural network (CNN). Jurnal Mandiri IT, 13(3), 323-331.

[15] Suyahman, S., & Hapsari, A. (2025). VGG-Based Feature Extraction for Classifying Traditional Batik Motifs Using Machine Learning Models. Preservation, Digital Technology & Culture, (0).

Downloads

Published

2026-01-29

How to Cite

[1]
“Classification of Tulungagung Batik Images in Comparison of Convolution Neural Network and Vision Transformer Algorithms: Author’s Country: Indonesia”, bit-cs, vol. 7, no. 1, pp. 12–24, Jan. 2026, doi: 10.36805/84twwe32.

Most read articles by the same author(s)