A Detection of Malacca Woven Fabric Motifs Using the YOLOv4 Method

Authors

  • Adi Neno a:1:{s:5:"en_US";s:28:"Universitas Widyagama Malang";}
  • Aviv Yuniar Rahman Universitas Widyagama Malang
  • Fitri Marisa Universitas Widyagama Malang

DOI:

https://doi.org/10.36805/bit-cs.v5i1.6081

Keywords:

Object Detection, Identifying, Malacca woven fabric motifs, Woven fabric, YOLOv4

Abstract

Malacca is one of the districts that has a weaving culture and also produces woven cloth in East Nusa
Tenggara. The large number of types of woven cloth from each Malacca tribe means that outsiders and
even native Malacca people are not yet familiar with typical Malacca motifs, therefore a system is
needed that can help make it easier for people to recognize the types of woven fabric motifs. Malacca
woven fabric in this study was used to detect the types of woven fabric motifs in Malacca district using
the YOLOv4 method. The results of detecting Malacca woven fabric motifs correspond to each type of
woven fabric. Apart from that, the Malacca woven fabric motif detection system with YOLOv4
technology is an effective and efficient solution in recognizing Malacca woven fabric motifs. Malacca
woven fabric is classified into four classes with an impressive mAP score of 100%.

Downloads

Download data is not yet available.

References

L. D. E. Koten, R. Safitri, and M. P. Wulandari, “Hermeneutics of Ikat Weaving (Utan) Lian Lipa from Sikka Regency, East Nusa Tenggara (NTT),” Int. J. Sci. Soc., vol. 3, no. 3, pp. 107–118, 2021, doi: 10.54783/ijsoc.v3i3.358.

Y. Nataliani, “Frieze Group in Generating Traditional Cloth Motifs of the East Nusa Tenggara Province,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 6, no. 3, p. 651, 2022, doi: 10.31764/jtam.v6i3.8568.

S. Soetrisno, D. R. Sulistyaningrum, and I. Bifawa’idati, “Texture-Based Woven Image Classification using Fuzzy C-Means Algorithm,” Int. J. Comput. Sci. Appl. Math., vol. 8, no. 1, p. 1, 2022, doi: 10.12962/j24775401.v8i1.9588.

Y. Suryati and B. N. Nggarang, “Analysis of Working Postures on the Low Back Pain Incidence in Traditional Songket Weaving Craftsmen in Ketang Manggarai Village, NTT,” J. Epidemiol. Public Heal., vol. 5, no. 4, pp. 469–476, 2020, doi: 10.26911/jepublichealth.2020.05.04.09.

J. L. . Bessie, A. S. W. Langga, and D. N. S. Sunbanu, “Analysis of Marketing Strategies in Dealing with Business Competition (Study on Ruba Muri Ikat Weaving MSME in Kupang City),” Webology, vol. 19, no. 1, pp. 780–794, 2022, doi: 10.14704/web/v19i1/web19055.

H. Hambali, M. Mahayadi, and ..., “Classification of Lombok Songket Cloth Image Using Convolution Neural Network Method (Cnn),” Pilar Nusa Mandiri …, no. 85, pp. 149–156, 2021, doi: 10.33480/pilar.v17i2.2705.

T. R. S. Hidayat, Nurindah, and D. A. Sunarto, “Developing of Indonesian colored cotton varieties to support sustainable traditional woven fabric industry,” IOP Conf. Ser. Earth Environ. Sci., vol. 418, no. 1, 2020, doi: 10.1088/1755-1315/418/1/012073.

J. S. Nalenan, F. Siki, M. R. Talan, and R. J. Wabang, “Cultural Ideology in Woven Fabric Motif of Insana Communities at The Indonesian– Timor Leste Border,” Int. J. Lang. Cult., vol. 3, no. 2, pp. 57–63, 2021.

X. Long et al., “PP-YOLO: An Effective and Efficient Implementation of Object Detector,” 2020, [Online]. Available: http://arxiv.org/abs/2007.12099

F. S. Lesiangi, A. Y. Mauko, and B. S. Djahi, “Feature extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for identification of woven fabric motifs in South Central Timor Regency,” J. Phys. Conf. Ser., vol. 2017, no. 1, 2021, doi: 10.1088/1742-6596/2017/1/012010.

E. Halim et al., “The Application of Digital Module Design of East Sumba Woven Fabric on Interior Accessories,” pp. 286–294, 2022, doi: 10.5220/0010752600003113.

J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO: From YOLOv1 and Beyond,” pp. 1–34, 2023, [Online]. Available: http://arxiv.org/abs/2304.00501

S. Lestari, “ieeQuality Detection of Export Purple Sweet Potatoes Using Yolov4-Tiny”.

Downloads

Published

2024-01-31

How to Cite

[1]
“A Detection of Malacca Woven Fabric Motifs Using the YOLOv4 Method”, bit-cs, vol. 5, no. 1, pp. 45–50, Jan. 2024, doi: 10.36805/bit-cs.v5i1.6081.

Most read articles by the same author(s)