POTENSI ANTIINFLAMASI SENYAWA BIOAKTIF DARI SYZYGIUM MYRTIFOLIUM: STUDI MOLECULAR DOCKING BERTARGET COX-2
Abstract
Chronic inflammation contributes significantly to various degenerative diseases, with Cyclooxygenase-2 (COX-2) being a central target for anti-inflammatory drug development. Syzygium myrtifolium, a native Indonesian plant, is known to contain a variety of bioactive compounds with pharmacological potential. This study aims to investigate the anti-inflammatory activity of S. myrtifolium active compounds on COX-2 using a molecular docking approach. The tested compounds include avicularin, betulinic acid, ursolic acid, and two flavanones modeled and docked against the COX-2 protein (PDB ID: 5F19) using YASARA. Docking simulations were performed using YASARA software via a blind docking method and visualized through Discovery Studio. The results revealed that four compounds demonstrated stronger binding affinity than celecoxib, with (2S)-7-Hydroxy-5-methoxy-6,8-dimethylflavanone showing the most stable interaction with 9.0450 kcal/mol binding energy. Toxicity prediction suggests these compounds are generally safe based on LD50 values and toxicity class. These findings support the potential of S. myrtifolium as a natural source of COX-2 inhibitors.
References
Amanah, D., Manalu, R. T., Sholikha, M., Syafriana, V., & Yasman, Y. (2023). Molecular Docking of Active Compounds of Syzygium myrtifolium Walp. Leaves on Leukotriene A4 Hydrolase Receptors as Colorectal Anticancer. Jurnal Kimia Sains Dan Aplikasi, 26(5), 194–203. https://doi.org/10.14710/jksa.26.5.194-203
Araújo, P. H. F., Ramos, R. S., da Cruz, J. N., Silva, S. G., Ferreira, E. F. B., de Lima, L. R., Macêdo, W. J. C., Espejo-Román, J. M., Campos, J. M., & Santos, C. B. R. (2020). Identification of potential COX-2 inhibitors for the treatment of inflammatory diseases using molecular modeling approaches. Molecules, 25(18). https://doi.org/10.3390/molecules25184183
Bäck, M., Yurdagul, A., Tabas, I., Öörni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. In Nature Reviews Cardiology (Vol. 16, Issue 7, pp. 389–406). Nature Publishing Group. https://doi.org/10.1038/s41569-019-0169-2
Deng, Z., & Liu, S. (2021). Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Delivery and Translational Research, 11(4), 1475–1497. https://doi.org/10.1007/s13346-021-00977-8
Hawash, M., Jaradat, N., Sabobeh, R., Abualhasan, M., & Qaoud, M. T. (2023). New Thiazole Carboxamide Derivatives as COX Inhibitors: Design, Synthesis, Anticancer Screening, In Silico Molecular Docking, and ADME Profile Studies. ACS Omega, 8(32), 29512–29526. https://doi.org/10.1021/acsomega.3c03256
Jena, S., Ray, A., Sahoo, A., Das, P. K., Dash, K. T., Kar, S. K., Nayak, S., & Panda, P. C. (2021). Chemical Composition and Biological Activities of Leaf Essential Oil of Syzygium myrtifolium from Eastern India. Journal of Essential Oil-Bearing Plants, 24(3), 582–595. https://doi.org/10.1080/0972060X.2021.1947897
Krewski, D., Acosta, D., Andersen, M., Anderson, H., Bailar, J. C., Boekelheide, K., Brent, R., Charnley, G., Cheung, V. G., Green, S., Kelsey, K. T., Kerkvliet, N. I., Li, A. A., McCray, L., Meyer, O., Patterson, R. D., Pennie, W., Scala, R. A., Solomon, G. M., … Zeise, L. (2010). Toxicity testing in the 21st century: A vision and a strategy. In Journal of Toxicology and Environmental Health - Part B: Critical Reviews (Vol. 13, Issues 2–4, pp. 51–138). https://doi.org/10.1080/10937404.2010.483176
Lucido, M. J., Orlando, B. J., Vecchio, A. J., & Malkowski, M. G. (2016). Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Biochemistry, 55(8), 1226–1238. https://doi.org/10.1021/acs.biochem.5b01378
Mariska, S., Zaki, M., Rahmadi, A., Hanifa, M., Hasna, R., Azara, S., Irawan, N., Putri, R. A., & Saputra, M. Y. (2024). Antibacterial Potency of Bioactive Compounds from Areca catechu Nuts: A Molecular Docking Study Targeting 8H1B. Helium: Journal of Science and Applied Chemistry, 04, 13–18. https://journal.unpak.ac.id/index.php/he_jsac
Oktaviani, N. P. S., Ivansyah, A. L., Saputra, M. Y., Handayani, N., Fadylla, N., & Wahyuningrum, D. (2023). Potential application of bisoprolol derivative compounds as antihypertensive drugs: Synthesis and in silico study. Royal Society Open Science, 10(12). https://doi.org/10.1098/rsos.231112
Peregrym, K., Szczukowski, Ł., Wiatrak, B., Potyrak, K., Czyżnikowska, Ż., & Świątek, P. (2021). In vitro and in silico evaluation of new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone as promising cyclooxygenase inhibitors. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/ijms22179130
Shifeng, P., Boopathi, V., Murugesan, M., Mathiyalagan, R., Ahn, J. C., Xiaolin, C., Yang, D. U., Kwak, G. Y., Kong, B. M., Yang, D. C., Kang, S. C., & Hao, Z. (2022). Molecular Docking and Dynamics Simulation Studies of Ginsenosides with SARS-CoV-2 Host and Viral Entry Protein Targets. Natural Product Communications, 17(11). https://doi.org/10.1177/1934578X221134331