TURNING TIME INTO VALUE: ENHANCING CUSTOMER EXPERIENCE THROUGH AVERAGE HANDLING TIME (AHT) OPTIMIZATION
DOI:
https://doi.org/10.36805/pg666s98Keywords:
Average Handling Time (AHT), Business Process Outsourcing (BPO), Multiple linear regression, Performance optimizationAbstract
This study highlights the importance of Average Handling Time (AHT) as a key operational efficiency metric in the Business Process Outsourcing (BPO) industry, particularly in customer service. The research aims to identify critical factors influencing AHT performance and to formulate improvement strategies based on systematic analysis. Using multiple linear regression methods, the study statistically analyzes the relationships between ticket characteristics, agent competencies, and AHT outcomes. Data were collected from 100 customer service agents through a 5-point Likert scale questionnaire and analyzed using SPSS software. The results showed significant improvement, with AHT decreasing from 92.38 minutes to 19.06 minutes (a 79.4% improvement). However, the handling duration remained 4.06 minutes above the target, indicating room for further enhancement. Agent competencies were found to have a substantial impact on AHT variation, with the model explaining 90.9% of performance differences. These findings led to strategic recommendations such as competency training, communication enhancement, time management optimization, technology integration, and improved ticket management, all aimed at boosting operational efficiency and customer satisfaction.
Abstrak
Penelitian ini menyoroti pentingnya Average Handling Time (AHT) sebagai metrik utama efisiensi operasional dalam industri Business Process Outsourcing (BPO), khususnya pada layanan pelanggan. Tujuan dari penelitian ini adalah untuk mengidentifikasi faktor-faktor krusial yang memengaruhi kinerja AHT serta merumuskan strategi peningkatan berdasarkan analisis sistematis. Dengan menggunakan metode regresi linier berganda, studi ini menganalisis secara statistik hubungan antara karakteristik tiket, kompetensi agen, dan hasil AHT. Data dikumpulkan dari 100 agen layanan pelanggan melalui kuesioner berskala Likert 5 poin, dan dianalisis menggunakan perangkat lunak SPSS. Hasil penelitian menunjukkan adanya peningkatan signifikan, di mana AHT menurun dari 92,38 menit menjadi 19,06 menit (peningkatan sebesar 79,4%). Namun, durasi penanganan masih 4,06 menit di atas target, yang menunjukkan masih adanya ruang untuk perbaikan. Kompetensi agen terbukti memiliki pengaruh besar terhadap variasi AHT, dengan model menjelaskan 90,9% dari perbedaan kinerja. Temuan ini menghasilkan rekomendasi strategis seperti pelatihan kompetensi, peningkatan komunikasi, optimalisasi manajemen waktu, integrasi teknologi, dan pengelolaan tiket yang lebih baik, yang semuanya bertujuan untuk meningkatkan efisiensi operasional dan kepuasan pelanggan.
References
Alhazemi, A. A. (2023). Impact of employee competence and behaviour on banking customer trust: Empirical study in Saudi Arabia. Archives of Business Research, 11(8), 71–81. https://doi.org/10.14738/abr.118.15049
AmplifAI. (2025). Call center average handle time: A comprehensive guide. AmplifAI. https://www.amplifai.com/
Duan, W.-Y., Wu, T.-J., & Liang, Y. (2025). Are resources always beneficial? The three-way interaction between slashies’ role stress, self-efficacy and job autonomy. Asia Pacific Journal of Management, 1–31. https://doi.org/10.1007/s10490-025-09937-6
Ingsih, K., Astuti, S. D., & Riyanto, F. (2024). The role of digital competence in improving service quality and employee performance. SA Journal of Human Resource Management, 22, a2689. https://doi.org/10.4102/sajhrm.v22i0.2689
Invoca. (2025). What is average handle time (AHT) and why it matters? Invoca. https://www.invoca.com/
Kediya, S., Mohanty, V., Gurjar, A., Chouhan, N., Sharma, R., & Golar, P. (2024). Chatbots in customer service: A comparative analysis of performance and customer satisfaction. 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI), 1–6. https://doi.org/10.1109/IDICAIEI57460.2024.10645670
Luo, L., & Song, P. X. (2023). Multivariate online regression analysis with heterogeneous streaming data. Canadian Journal of Statistics, 51*(1), 111–133. https://doi.org/10.1002/cjs.11766
Mihup. (2024). How to reduce average handle time in call centers. Mihup. https://mihup.com/
Orellana, S., Magga, L., Gorgi, P., Kweon, H., & Bahamonde, F. (2024). Estimating causal effects of customer satisfaction on downstream metrics in a multi-queue contact center [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2412.04860
Pacella, M., Vasco, P., Papadia, G., & Giliberti, V. (2024). An assessment of digitalization techniques in contact centers and their impact on agent performance and well-being. Sustainability, 16(2), 714. https://doi.org/10.3390/su16020714
Putra, N. A., & Putra, A. (2024). Communication planning of ICONNET 150678 contact center in handling customer complaints. Eduvest-Journal of Universal Studies, 4(8), 6642–6656. https://doi.org/10.36418/edv.v4i8.2732
Tantawy, A. A., Abdelhady, H. R., Zaki, S., & Ismail, M. M. (n.d.). Data-driven approach for enhancing customer satisfaction: A case study in service operations management. International Journal of Services and Operations Management. (in press).
Wardhani, A. G., Simarmata, J., & Abdurachman, E. (2025). The influence of personnel competence, facility reliability and speed of process on customer satisfaction through service performance at Terminal 3 of Soekarno-Hatta International Airport. *Jurnal Ekonomi Manajemen Sistem Informasi, 6*(6), 4309–4319. https://doi.org/10.38035/jemsi.v6i6.5986
Zendesk. (2025). Average handle time benchmarks across industries. Zendesk. https://www.z