A REDESIGNED PLASTIC CAR SEAT LEVER: INTEGRATING USER NEEDS AND TECHNICAL SPECIFICATIONS THROUGH QUALITY FUNCTION DEPLOYMENT
DOI:
https://doi.org/10.36805/v9qtf150Keywords:
Redesign, Quality Function Deployment (QFD), Seat Lever, Tensile StrengthAbstract
The automotive industry frequently struggles to strike a balance between assembly efficiency and structural strength in plastic components. PT. XYZ, a seat manufacturer, encountered this issue with their D01 car seat lever, which had a robust strength of 22.1 kgf but a lengthy assembly time of 2.5 minutes. A subsequent redesign, model D42, improved efficiency by reducing assembly time to 1.8 minutes and consolidating two parts into one. However, this new design had a critical flaw, as its average tensile strength of 16.8 kgf fell short of the required 18.5 kgf standard, making it susceptible to failure. The objective of this study was to redesign the lever to meet the 18.5 kgf strength requirement, improve assembly efficiency, and satisfy user needs with the Quality Function Deployment (QFD) method. Data was gathered from 20 respondents, including car users, technicians, and engineers, via questionnaires. The analysis showed that users prioritized durability, ease of use, accessibility, and ergonomics. The new prototype, developed using QFD principles, successfully endured a tensile force of 22.5 kgf, exceeding the safety standard and fulfilling user expectations for functionality and comfort.
Abstrak
Industri otomotif sering kali berjuang untuk mencapai keseimbangan antara efisiensi perakitan dan kekuatan struktural pada komponen plastik. PT. XYZ, produsen kursi, menghadapi masalah ini dengan tuas kursi mobil D01 mereka, yang memiliki kekuatan yang kuat sebesar 22,1 kgf tetapi waktu perakitannya lama, yaitu 2,5 menit. Desain ulang berikutnya, model D42, meningkatkan efisiensi dengan mengurangi waktu perakitan menjadi 1,8 menit dan menggabungkan dua bagian menjadi satu. Namun, desain baru ini memiliki kelemahan kritis, karena kekuatan tarik rata-ratanya sebesar 16,8 kgf tidak memenuhi standar 18,5 kgf yang disyaratkan, sehingga rentan terhadap kegagalan. Tujuan dari penelitian ini adalah mendesain ulang tuas untuk memenuhi persyaratan kekuatan 18,5 kgf, meningkatkan efisiensi perakitan, dan memenuhi kebutuhan pengguna dengan metode Quality Function Deployment (QFD). Data dikumpulkan dari 20 responden, termasuk pengguna mobil, teknisi, dan insinyur, melalui kuesioner. Hasil analisis menunjukkan bahwa pengguna memprioritaskan daya tahan, kemudahan penggunaan, aksesibilitas, dan ergonomi. Prototipe baru yang dikembangkan dengan menggunakan prinsip-prinsip QFD ini berhasil menahan gaya tarik sebesar 22,5 kgf, melebihi standar keamanan dan memenuhi harapan pengguna akan fungsionalitas dan kenyamanan.
References
Caballero-Bruno, I., Töpfer, D., Wohllebe, T., & Hernández-Castellano, P. M. (2022). Assessing car seat posture through comfort and user experience. Applied Sciences, 12(7), 3376. https://doi.org/10.3390/app12073376
Callister, W. D., & Rethwisch, D. G. (2020). Materials science and engineering: An introduction (10th ed.). Wiley.
Ginting, R., & Wahyuni, D. (2022). Integration of quality function deployment (QFD) and design for assembly (DFA) in product development. IOP Conference Series: Materials Science and Engineering, 1250(1), 012011. https://doi.org/10.1088/1757-899X/1250/1/012011
Goodship, V. (2021). Practical guide to injection moulding (3rd ed.). Smithers Rapra.
Havelka, A., Nagy, L., Tunák, M., & Antoch, J. (2021). Testing the effect of textile materials on car seat comfort in real traffic. Applied Ergonomics, 90, 103309. https://doi.org/10.1016/j.apergo.2020.103309
Kikumoto, M., Saito, Y., Tanaka, H., & Nakamura, K. (2021). Development of automotive seat structure considering comfort and safety. SAE Technical Paper Series, 2021-01-1234. SAE International. https://doi.org/10.4271/2021-01-1234
Kim, J., Park, S., Lee, D., & Choi, H. (2024). An ergonomic study on the operation method and in-vehicle location of an automotive electronic gearshift. Applied Sciences, 14(2), 672. https://doi.org/10.3390/app14020672
Kumar, V., Oumer, K., Merso, E. A., Sharma, R., Hira, J., & Haldar, B. (2023). Ergonomic and anthropometric evaluation of locally manufactured vehicle seats. Indian Journal of Occupational and Environmental Medicine, 27(4), 215–221. https://doi.org/10.4103/ijoem.ijoem_31_23
Nelfiyanti, N., Ibnimatiin, R. A., Rani, A. M., Sudarwati, W., & Ramadhan, A. I. (2021). Design of automotive product seat lifting aids in minimizing MSD complaints using AHOQ method (Case study: Final line of automotive industry assembly process). Journal of Applied Sciences and Advanced Technology, 3(3), 83–95. https://doi.org/10.24853/jasat.3.3.83-95
Nisah, K. (2018). Introduction to polymer science and plastics. CV Budi Utama.
Osswald, T. A., & Hernández-Ortiz, J. P. (2019). Polymer processing: Modeling and simulation (2nd ed.). Hanser. https://doi.org/10.3139/9781569905690
Osswald, T. A., & Menges, G. (2021). Materials science of polymers for engineers (4th ed.). Hanser. https://doi.org/10.3139/9781569908554
Pino-Servian, M., de la Puente-Gil, Á., Colmenar-Santos, A., & Rosales-Asensio, E. (2025). Applying QFD to the Vehicle Market Deployment Process. World Electric Vehicle Journal, 16(5), 285. https://doi.org/10.3390/wevj16050285
Porkolab, L., & Lakatos, I. (2024). Possibilities for further development of the driver’s seat in the case of a non-conventional seating positions. Heliyon, 10(7), e28909. https://doi.org/10.1016/j.heliyon.2024.e28909
Purnama, I., & Nur, A. (2018). Teknologi cetakan plastik: Desain dan aplikasi. Andi Offset.
Purba, H. H., Sunadi, S., Suhendra, & Paulina, E. (2020). The application of Quality Function Deployment in car seat industry. ComTech: Computer, Mathematics and Engineering Applications, 11(1), 35–42. https://doi.org/10.21512/comtech.v11i1.6329
Van den Boom-Stoop, L. A. R., Kraaijeveld, P., & Vink, P. (2024). Toward the design of an ultra-light car seat with a reclining back rest. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 68(1), 42–46. https://doi.org/10.1177/10711813241273498
Vinodh, S., & Rathod, G. (2019). Application of QFD for product design: A case study. Materials Today: Proceedings, 18, 5152–5160. https://doi.org/10.1016/j.matpr.2019.07.502
Wolf, P., Hennes, N., Rausch, J., & Potthast, W. (2022). The effects of stature, age, gender, and posture preferences on preferred joint angles after real driving. Applied Ergonomics, 101, 103671. https://doi.org/10.1016/j.apergo.2022.103671
Zhang, H., Li, Y., Wang, S., & Chen, J. (2024). Multi-objective ergonomics design model optimization for micro electric cars via response surface methodology. Discover Applied Sciences, 6(1), 552. https://doi.org/10.1007/s42452-024-06219-z