PEMANFAATAN SISTEM ARTIFICIAL INTELLIGENCE (AI) PADA INDUSTRI OTOMOTIF SECARA TINJAUAN LITERATUR SISTEMATIS
DOI:
https://doi.org/10.36805/16h2rs54Keywords:
Artificial Intelligence, Automotive Industry, Autonomous Vehicles, Smart Manufacturing, Driver Assistance SystemAbstract
The use of Artificial Intelligence (AI) technology in the automotive industry is becoming increasingly relevant in the era of Industrial Revolution 4.0 because it can improve production efficiency, safety, and vehicle innovation. This study aims to systematically examine the application of AI in the automotive sector by highlighting trends, contributions, and challenges faced. The method employed is a Systematic Literature Review (SLR), which analyses more than 40 scientific articles published between 2020 and 2025. The results of the study indicate that AI plays a significant role in five main areas: intelligent manufacturing, autonomous vehicles, Advanced Driver Assistance Systems (ADAS), personalised user experience, and supply chain optimisation. The main contributions lie in increasing operational efficiency, reducing traffic accidents, and accelerating the development of automotive technology. However, significant challenges remain related to integration with legacy infrastructure, cybersecurity issues, and inadequate regulations. This study emphasises the importance of developing Explainable AI (XAI) to increase transparency and public trust in autonomous vehicles. In conclusion, this study provides a comprehensive overview of the potential and obstacles to AI utilisation in the automotive industry, and opens new directions for further research related to safer, more adaptive, and more sustainable AI integration.
Abstrak
Pemanfaatan teknologi Artificial Intelligence (AI) dalam industri otomotif menjadi semakin relevan di era Revolusi Industri 4.0 karena mampu meningkatkan efisiensi produksi, keselamatan, dan inovasi kendaraan. Penelitian ini bertujuan untuk mengkaji secara sistematis penerapan AI dalam sektor otomotif dengan menyoroti tren, kontribusi, serta tantangan yang dihadapi. Metode yang digunakan adalah Systematic Literature Review (SLR) dengan menganalisis lebih dari 40 artikel ilmiah terbitan 2020–2025. Hasil kajian menunjukkan bahwa AI berperan penting dalam lima area utama: manufaktur cerdas, kendaraan otonom, Advanced Driver Assistance Systems (ADAS), personalisasi pengalaman pengguna, dan optimasi rantai pasok. Kontribusi utama terletak pada peningkatan efisiensi operasional, pengurangan kecelakaan lalu lintas, serta percepatan pengembangan teknologi otomotif. Namun, tantangan signifikan masih muncul terkait integrasi dengan infrastruktur lama, isu keamanan siber, dan regulasi yang belum memadai. Studi ini menekankan pentingnya pengembangan Explainable AI (XAI) untuk meningkatkan transparansi dan kepercayaan publik terhadap kendaraan otonom. Kesimpulannya, penelitian ini memberikan gambaran komprehensif mengenai potensi dan hambatan pemanfaatan AI dalam otomotif, serta membuka arah baru untuk penelitian lanjutan terkait integrasi AI yang lebih aman, adaptif, dan berkelanjutan.
References
Aprilia, S., Kurnia, H., Setyawan, W. T., Ashar, E., & Wahyudi, A. (2023). Peninjauan Keselamatan dan Kesehatan (K3) Terhadap Aktifitas Kerja Karyawan di Berbagai Perusahaan Secara Kajian Sisitematik. Industry Xplore, 8(2), 203–211. https://doi.org/10.36805/teknikindustri.v8i1.5102
Atakishiyev, S., Salameh, M., Yao, H., & Goebel, R. (2024). Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions. IEEE Access, 12, 101603–101625. https://doi.org/10.1109/ACCESS.2024.3431437
Bäckel, N., Hort, S., Kis, T., Nettleton, D. F., Egan, J. R., Jacobs, J. J. L., Grunert, D., & Schmitt, R. H. (2023). Elaborating the potential of Artificial Intelligence in automated CAR-T cell manufacturing. Frontiers in Molecular Medicine, 3(September), 1–6. https://doi.org/10.3389/fmmed.2023.1250508
Eko Hari Purnomo, D. (2024). Perancangan Model Artificial Intelligence (Ai) Untuk Membantu Menentukan Persediaan Bahan Baku Kayu Pada Industri Furnitur Dengan Pendekatan Metode Fuzzy Mamdani. Industry Xplore, 9(1), 323–330. https://doi.org/10.36805/teknikindustri.v9i1.6054
Hossain, M. N., Rahim, M. A., Rahman, M. M., & Ramasamy, D. (2025). Artificial Intelligence Revolutionising the Automotive Sector: A Comprehensive Review of Current Insights, Challenges, and Future Scope. Computers, Materials and Continua, 82(3), 3643–3692. https://doi.org/10.32604/cmc.2025.061749
Kumar, P. L., & Choudhary, D. J. (2023). Role of Artificial Intelligence in Technology: A Review. Journal Global Values, XIV(S.Issue), 1–8. https://doi.org/10.31995/jgv.2023.v14is3.001
Morales Matamoros, O., Takeo Nava, J. G., Moreno Escobar, J. J., & Ceballos Chávez, B. A. (2025). Artificial Intelligence for Quality Defects in the Automotive Industry: A Systemic Review. Sensors, 25(5), 1–39. https://doi.org/10.3390/s25051288
Mubarak, R. (2020). Implementasi Artificial Intelligence Dalam Proses Industri Manufaktur Otomotif. Jurnal Ilmu Komputer J, 3(10–15), 10–15.
Mueller, C., & Mezhuyev, V. (2022). AI Models and Methods in Automotive Manufacturing: A Systematic Literature Review. Studies in Computational Intelligence, 1061(January), 1–25. https://doi.org/10.1007/978-3-031-14748-7_1
Novita, Y., & Zahra, R. (2024). Penerapan Artificial Intelligence ( AI ) untuk Meningkatkan Efisiensi Operasional di Perusahaan Manufaktur : Studi Kasus PT XYZ. Jurnal Manajemen Dan Teknologi, 1(1), 11–21.
Nurizzati, A., Permatasari, I., & Khairiyah, A. N. (2025). Konseptualisasi Kerangka Kerja Analisis Ketahanan Tim Pada Proyek Pengembangan Produk Baru Di Industri Otomotif. Industry Xplore, 10(1), 492–498. https://doi.org/10.36805/teknikindustri.v10i1.9976
Nurtrihadi, A., & Waluyo, D. (2025). Penerapan Artificial Intelligence ( AI ) Untuk Optimasi Jadwal Produksi Di Industri Manufaktur Dalam Upaya Meningkatkan Produktivitas Kerja. 1, 1–12.
Pan, F., Song, Y., Wen, L., Petrovic, N., Lebioda, K., & Knoll, A. (2025). Automating Automotive Software Development: A Synergy of Generative AI and Formal Methods.
Prihatiningsih, B. E., & Susanti, A. (2023). Mufakat Mufakat. Jurnal Ekonomi Akuntansi, Manajemen, 2(2), 91–107.
Rachmadana, S. L., Alkusuma Putra, S. A., & Difinubun, Y. (2022). Dampak Artificial Intelligence Terhadap Perekonomian. Financial and Accounting Indonesian Research, 2(2), 71–82. https://doi.org/10.36232/jurnalfairakuntansiunimuda.v2i2.3837
Rana, K., & Khatri, N. (2024). Automotive intelligence: Unleashing the potential of AI beyond advance driver assisting system, a comprehensive review. Computers and Electrical Engineering, 117(May 2023), 109237. https://doi.org/10.1016/j.compeleceng.2024.109237
Satria, F., Purnomo, A. A., Maulana, A., & Hasibuan, A. (2025). Open Access KECERDASAN BUATAN ( AI ) DALAM DUNIA INDUSTRI ARTIFICIAL INTELLIGENCE ( AI ) IN INDUSTRY. 02(01), 253–262.
Singh, K. B., & Arat, M. A. (2019). Deep Learning in the Automotive Industry: Recent Advances and Application Examples. 1–14.
Soegoto, E. S., Utami, R. D., & Hermawan, Y. A. (2019). Influence of artificial intelligence in automotive industry. Journal of Physics: Conference Series, 1402(6). https://doi.org/10.1088/1742-6596/1402/6/066081
Stappen, L., Dillmann, J., Striegel, S., Vögel, H. J., Flores-Herr, N., & Schuller, B. W. (2023). Integrating Generative Artificial Intelligence in Intelligent Vehicle Systems. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 5790–5797. https://doi.org/10.1109/ITSC57777.2023.10422003
Sudarmono, S., Kurnia, H., Wahyuni, A. D., Adistyani, N., & Selaeman, A. A. (2023). Penggunaan Material Logam di Berbagai Industri Manufaktur Indonesia: Sisitematik Kajian Literatur. Industry Xplore, 8(1), 220–228. https://doi.org/10.36805/teknikindustri.v8i1.5098
Suwandhi, A., Putra, J., & Ibbi, U. (2024). Penerapan AI dalam Menentukan Harga Mobil. Jurnal Minfo Polgan, 13(1), 550–560.
Verma, J. K., Kanday, R., & Gupta, S. (2024). Role of Artificial Intelligence in Revolutionizing the Automotive Industry: A Review. E3S Web of Conferences, 556, 1–7. https://doi.org/10.1051/e3sconf/202455601039
Wan, L., Zhao, J., Wiedholz, A., Bied, M., de Lucena, M. M., Jagtap, A. D., Festag, A., Fröhlich, A. A., Keen, H. E., & Vinel, A. (2025). Systematic Literature Review on Vehicular Collaborative Perception -- A Computer Vision Perspective. 1–39.
Yusufadz, A. C., & Rosyidin, A. (2022). Analisis Penerapan Artificial Intelligence Dan Robotik Pada Industri Manufaktur Indonesia Dalam Menghadapi Era Industri 4.0. Prosiding Seminar Nasional Teknologi …, 1(1), 227–232.
Zulkarnaen, I., Kurnia, H., Saing, B., & Nuryono, A. (2023). Reduced painting defects in the 4-wheeled vehicle industry on product type H-1 using the lean six sigma-DMAIC approach. Jurnal Sistem Dan Manajemen Industri (JSMI), 7(2), 179–192. https://doi.org/10.30656/jsmi.v7i2.7512
Zulkarnaen, I., Vendhy, A., Nuryono, A., & Widhi, O. (2024). Benefits of implementing Industry 4 . 0 technology in health services. Journal Industrial Services, 10(2), 295–306. https://doi.org/10.62870/jiss.v10i2.28364