Classification Of Rice Plant Diseases Based on Leaf Images Using the Multi Class Support Vector Machine (M-SVM) Method

Author's Country: Indonesia

Authors

  • Febiana Angela tanesab Universitas Widya Gama Malang
  • Rangga Pahlevi Putra Universitas Widya Gama Malang
  • Aviv Yuniar Rahman Universitas Widya Gama Malang

DOI:

https://doi.org/10.36805/bitcs.v6i2.10164

Keywords:

Accuracy, Disease Classification, GLCM, Leaf Image, M-SVM, Rice

Abstract

The rice farming sector plays an important role in the Indonesian economy, considering that rice is the main staple food. According to IRRI, rice farmers experience crop losses of up to 37% each year due to pests and diseases. This study aims to classify rice plant diseases using the Multi-Class Support Vector Machine (M-SVM) method based on leaf images. This study aims to provide education to farmers in recognizing and overcoming diseases in rice plant leaves. The types of rice leaf diseases classified in this study include Blast, Kresek, and Tungro. The data used in this study amounted to 1200, which were divided by varying training and testing data ratios, from 10% training and 90% testing to 90% training and 10% testing. Each variation of features and data division was evaluated by calculating the model performance parameters. The features used for classification include color (RGB) and texture (GLCM) from leaf images. The test results showed that the best accuracy obtained was 85.5% using a combination of color and texture features

Downloads

Download data is not yet available.

References

S. Sulistiyanto, TA Saputri, and N. Noviyanti, “Early Detection of Rice Pests and Diseases Using the Certainty Factor Method,” JURIKOM (Jurnal Ris. Komputer) , vol. 9, no. 1, p. 48, 2022, doi: 10.30865/jurikom.v9i1.3778.

Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, and Galih Wasis Wicaksono, “Rice Disease Classification Based on Leaf Images Using Resnet101 Trained Model,” J. RESTI (Information Systems and Technology Engineering) , vol. 5, no. 6, pp. 1216–1222, 2021, doi: 10.29207/resti.v5i6.3607.

M. Khoiruddin, A. Junaidi, and WA Saputra, “Rice Leaf Disease Classification Using Convolutional Neural Network,” J. Dinda Data Sci. Inf. Technol. Data Anal. , vol. 2, no. 1, pp. 37–45, 2022, doi: 10.20895/dinda.v2i1.341.

R. Naa et al. , “Classification of Papuan Batik Cloth Motifs Using the Support Vector Machine (SVM) 1,2 Method,” vol. 11, no. 35, 2024.

S. Andayani, “Bacterial Leaf Blight Disease,” BBPP Lembang. Accessed: Nov. 02, 2024. [Online]. Available: https://bbpplemembang.bppsdmp.pertanian.go.id/publikasi-detail/1145

E. Nahak et al. , “Disease Classification in Apple Plants Through Leaf Images Using Multiclass Support Vector Machine 1,2 Method,” vol. 11, no. 3, pp. 401–408, 2024.

F. Tampinongkol, “Identification of Tomato Leaf Diseases Using Gray Level Co-occurrence Matrix (GLCM) and Support Vector Machine (SVM),” Techno Xplore J. Comput. and Technol. Inf. , vol. 8, no. 1, pp. 08–16, 2023, doi: 10.36805/technoxplore.v8i1.3578.

Nurul Mudhofar and Soffiana Agustin, “Classification of Apple Leaf Diseases Using RGB Color Feature Extraction,” Repeater Publ. Tech. Inform. and Jar. , vol. 2, no. 3, pp. 147–156, 2024, doi: 10.62951/repeater.v2i3.120.

C. Wijaya, H. Irsyad, and W. Widhiarso, “Pneumonia Classification Using K-Nearest Neighbor Method With Glcm Extraction,” J. Algoritm. , vol. 1, no. 1, pp. 33–44, 2020, doi: 10.35957/algoritme.v1i1.431.

J.E. Bata et al. , “ON GOOGLE MAPS USING MULTI-CLASS,” vol. 8, no. 6, pp. 11115–11123, 2024.

Kurniawan, I., Hananto, A. L., Hilabi, S. S., Hananto, A., Priyatna, B., & Rahman, A. Y. (2023). Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 10(1), 731-740.

Priyatna, B., & Hilabi, S. S. (2025). Klasifikasi Sentimen Analisis Ulasan Aplikasi Alfagift Menggunakan Algoritma Long Short Term Memory. STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 4(2), 48-55.

Priyatna, B., Rahman, T. K. A., Hananto, A. L., Hananto, A., & Rahman, A. Y. (2024). MobileNet Backbone Based Approach for Quality Classification of Straw Mushrooms (Volvariella volvacea) Using Convolutional Neural Networks (CNN). JOIV: International Journal on Informatics Visualization, 8(3-2), 1749-1754.

Salsabila, S. A., Priyatna, B., & Hananto, A. (2025). Komparasi Kinerja Model Naive Bayes, SVM, dan BERT dalam Klasifikasi Sentimen Ulasan Pada Aplikasi YUMMY. STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 4(2), 42-47.

Hananto, A. L., Hananto, A., Huda, B., Rahman, A. Y., Novalia, E., & Priyatna, B. (2024). Determination of Training Participants in Community Work Training Centers Using the Naïve Bayes Classifier Algorithm. JOIV: International Journal on Informatics Visualization, 8(3), 1162-1167.

Downloads

Published

2025-07-27

How to Cite

[1]
“Classification Of Rice Plant Diseases Based on Leaf Images Using the Multi Class Support Vector Machine (M-SVM) Method: Author’s Country: Indonesia”, bit-cs, vol. 6, no. 2, pp. 66–77, Jul. 2025, doi: 10.36805/bitcs.v6i2.10164.

Most read articles by the same author(s)