Application of XGBoost Algorithm in Sentiment Classification of MOBA Game Reviews on Google Play Store
Author's Country: Indonesia
DOI:
https://doi.org/10.36805/5x0adm73Keywords:
Snetiment Analysis, Gobiz, XGBoost, Random Forest, Google Play StoreAbstract
In the rapidly evolving digital era, business applications like GoBiz play a crucial role in supporting the operations of Micro, Small, and Medium Enterprises (MSMEs). This study aims to analyze user sentiment toward the GoBiz app based on reviews on the Google Play Store by applying two machine learning algorithms: Extreme Gradient Boosting (XGBoost) and Random Forest. Two labeling approaches were used: score-based labeling, which refers to star ratings, and lexicon-based labeling using the VADER method. Data from 10,000 reviews were collected through web scraping and processed through preprocessing, labeling, TF-IDF feature extraction, model training, and evaluation. The evaluation results showed that the XGBoost algorithm excelled in score-based labeling with the highest accuracy of 86.81%, while Random Forest was more stable than the VADER approach with an accuracy of 84.98%. Both models performed well, but their effectiveness depended on the type of labeling used. This research contributes to the development of a sentiment classification system in digital business applications, and can be utilized by GoBiz application developers to improve service quality based on user perceptions.
Downloads
References
[1] D. Sinaga and C. Jatmoko, Analisis Sentimen Untuk Mengetahui Kesan Player Game Mobile Legends Menggunakan Naïve Bayes Classifier. 2020. [Online]. Available: www.netlytic.org
[2] V. Fazrian, T. Suprapti, and R. Narasati, “Penerapan Algoritma Naive Bayes Terhadap Analisis Sentimen Aplikasi Game Multiplayer Online Battle Arena (Studi Kasus: Mobile Legend),” 2024.
[3] R. W. Abie and S. Rosmilawati, “Perilaku Toxic Dalam Komunikasi Virtual Di Game Online Mobile Legends: Bang Bang Pada Mahasiswa Fakultas Ilmu Muhammadiyah Palangkaraya University,” Restorica: Jurnal Ilmiah Ilmu Administrasi Negara dan Ilmu Komunikasi, vol. 9, pp. 44–48, 2023, doi: 10.33084/restorica.v9i1.
[4] D. Ikasari and Widiastuti, “Sentiment Analysis Review Novel ‘Goodreads’ Berbahasa Indonesia Menggunakan Naïve Bayes Classifier,” Jan. 2021.
[5] A. Okta, K. Adi, F. Prayoganing Gusti, and F. Wijaya, “Analisis Sentimen Ulasan Pengguna Aplikasi Mobile Legends Pada Google Playstore Menggunakan Naïve Bayes,” 2025.
[6] A. F. Panjalu, S. Alam, and M. I. Sulistyo, “MOBA GAME REVIEW SENTIMENT ANALYSIS USING SUPPORT VECTOR MACHINE ALGORITHM,” JIKO (Jurnal Informatika dan Komputer), vol. 6, no. 2, Aug. 2023, doi: 10.33387/jiko.v6i2.6388.
[7] S. W. Iriananda, R. W. Budiawan, A. Y. Rahman, and I. Istiadi, “Optimasi Klasifikasi Sentimen Komentar Pengguna Game Bergerak Menggunakan Svm, Grid Search Dan Kombinasi NGram,” Jurnal
Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 4, pp. 743–752, Aug. 2024, doi:10.25126/jtiik.1148244.
[8] J. M. A. S. Dachi and P. Sitompul, “Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit,” Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam (Jurrimipa), vol. 2, no. 2, pp. 87–103, Oct. 2023.
[9] R. G. Gunawan, Erik Suanda Handika, and Edi Ismanto, “Pendekatan Machine Learning Dengan Menggunakan Algoritma Xgboost (Extreme Gradient Boosting) Untuk Peningkatan Kinerja
Klasifikasi Serangan Syn,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 3, pp. 453–463, Dec. 2022, doi: 10.37859/coscitech.v3i3.4356.
[10] M. Zlobin and V. Bazylevych, “Bayesian Optimization For Tuning Hyperparametrs Of Machine Learning Models: A Performance Analysis In Xgboost,” Computer systems and information
technologies, no. 1, pp. 141–146, Mar. 2025, doi: 10.31891/csit-2025-1-16.
[11] P. Fajar and Y. I. Aviani, “Hubungan Self-Efficacy dengan Penyesuaian Diri: Sebuah Studi Literatur,” vol. 6, no. 1, pp. 2186–2194, 2022.
[12] A. Akbar et al., “Pelatihan Dan Pengembangan Sdm Dalam Perspektif Ilmu Manajemen: Sebuah Studi Literatur,” 2023.
[13] U. Mufidah and M. Siahaan, “Perancangan Aplikasi Perbanndingan Harga Produk (Historical Data) Menggunakan Teknik Scraping Web,” 2021.
[14] M. Rizqi, A. Rustiawan, and P. T. Prasetyaningrum, “Analisis Sentimen Terhadap Klinik Natasha Skincare di Yogyakarta Dengan Metode Google Review,” Journal of Information Technology Ampera, vol. 5, no. 1, pp. 2774–2121, 2024, doi: 10.51519/journalita.v5i1.556.
Downloads
Published
Issue
Section
License

This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

