Taguchi-Based Optimization of TIG Welding for Joining Low-Carbon Steel (ST37) and Stainless Steel (SUS 304)
Abstract
This study investigates the optimization of tungsten inert gas (TIG) welding parameters for joining dissimilar metals, specifically ST37 low-carbon steel and SUS 304 stainless steel, using the Taguchi L9 experimental design. The welding parameters evaluated include welding current (45-65 A), tungsten electrode diameter (1.6-2.4 mm), and shielding gas flow rate (12-18 LPM). The aim is to enhance joint integrity and mechanical properties by systematically analyzing the influence of these parameters on hardness and tensile load (TS loads). Hardness testing revealed that the weld zone exhibited the highest hardness, followed by the heat-affected zone and base metal. Tensile testing showed that the highest TS loads of 341 kgf were achieved at 45 A, 1.6 mm electrode diameter, and 12 LPM gas flow rate. Signal-to-noise ratio analysis and analysis of variance (ANOVA) indicated that welding current had the most significant influence on hardness and TS loads, with contributions of 39% and 41.27%, respectively, followed by electrode diameter (17% and 36.42%). In comparison, the gas flow rate had the least impact (45% and 22.31%). However, ANOVA results showed that none of the factors exhibited statistical significance (P > 0.05). The findings contribute to the field of welding engineering by providing optimized TIG welding parameters for ST37-SUS 304 joints, enhancing their reliability in various industrial applications such as automotive manufacturing, oil and gas, and power generation, where durable and corrosion-resistant welds are crucial.
References
A. Aditia, N. Nurdin, and A. S. Ismy, Analisa kekuatan sambungan material AISI 1050 dengan ASTM A36 dengan variasi arus pada proses pengelasan SMAW, 1 (2019) 1-4.
G. Gundara and A. A. Biggunah, Analisis Kekuatan Arus Terhadap Ketangguhan dan Ketahanan Sambungan Pada Proses Las Tig, 1 (2021) 233-248.
R. Rinaldi and R. Usman, Studi eksperimental kekuatan tarik dan kekerasan pada sambungan pipa ASTM A 106 Grade B dengan pengelasan SMAW, 1 (2019) 36-42.
B. T. Baroto and P. H. Sudargo, Pengaruh arus listrik dan filler pengelasan logam berbeda baja karbon rendah (st 37) dengan baja tahan karat (aisi 316l) terhadap sifat mekanis dan struktur mikro, (2017) 637-642.
B. N. Güzey and G. İrsel, Investigation of mechanical and microstructural properties in joining dissimilar P355GH and stainless 316L steels by TIG welding process, 205 (2023) 104965.
S. Baskutis, J. Baskutiene, R. Bendikiene, A. Ciuplys, and K. Dutkus, Comparative research of microstructure and mechanical properties of stainless and structural steel dissimilar welds, 14 (2021) 6180.
M. K. Al Amin, I. Nurcholis, W. D. Pratiwi, D. Anggara, and E. W. RW, Comparative analysis of hardness and microstructure of dissimilar welded materials at various welding positions in the fabrication industry, 4 (2022) 1-8.
S. Haribabu, M. Cheepu, L. Tammineni, N. K. Gurasala, V. Devuri, and V. C. Kantumuchu, "Dissimilar friction welding of AISI 304 austenitic stainless steel and AISI D3 tool steel: Mechanical properties and microstructural characterization," in Advances in Materials and Metallurgy: Select Proceedings of ICEMMM 2018, 2019, pp. 271-281: Springer.
Cahyono, Analisis Radiografi Sinar-X Terhadap Sambungan Pelat Baja Tahan Karat Aisi 304 Hasil Pengelasan Tungsten Inert Gas Dengan Arus 40–60 Ampere, 6 (2021) 12-22.
A. Khalim, "Pengaruh Laju Aliran Gas Pada Pengelasan Tig Al 6061 Dan 5083 Terhadap Sifat Fisik Dan Mekanik," Universitas Muhammadiyah Ponorogo, 2023.
A. A. Rosidah, S. Suheni, and E. W. Anarki, "Analisis Pengaruh Diameter Elektroda dan Kecepatan Las terhadap Sifat Mekanik dan Struktur Makro pada Baja AISI 1050 dengan Proses Pengelasan TIG," in Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan, 2021, vol. 1, no. 1, pp. 408-414.
D. Mulyadi, R. A. Nanda, A. Abdulah, A. D. Shieddieque, and S. D. Prasetyo, "Box-Behnken Response Surface Methodology: An Analysis of the Effect of Variations in TIG Welding Parameters on TS loads and Hardness Using SUS 304 Material," in Annales de Chimie. Science des Materiaux, 2024, vol. 48, no. 3, p. 313: International Information and Engineering Technology Association (IIETA).
M. Aissani, S. Guessasma, A. Zitouni, R. Hamzaoui, D. Bassir, and Y. Benkedda, Three-dimensional simulation of 304L steel TIG welding process: Contribution of the thermal flux, 89 (2015) 822-832.
B. Arivazhagan and M. Vasudevan, A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints, 16 (2014) 305-311.
B. Arivazhagan and M. Vasudevan, Studies on A-TIG welding of 2.25 Cr-1Mo (P22) steel, 18 (2015) 55-59.
K. H. Dhandha and V. Badheka, Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process, 17 (2015) 48-57.
J. Liu, Z. Rao, S. Liao, and H.-L. Tsai, Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents, 91 (2015) 990-1000.
A. Kumar, S. Maheshwari, and S. kumar Sharma, Optimization of Vickers hardness and impact strength of silica based fluxes for submerged arc welding by Taguchi Method, 2 (2015) 1092-1101.
EN 10025: 2019, Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels, 2019.
ASTM A283: 2018, Low and Intermediate TS loads Carbon Steel Plates, 2018.
ASTM A36: 1998, Standard Specification for Carbon Structural Steel, 1998.
JIS G3101: 2015, Rolled steels for general structure, 2015.
EN 10088-1: 1995, Stainless steels Part 1: List of stainless steels, 1995.
ASTM A240: 2023, Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, 2023.
ASTM A276: 2023, Standard Specification for Stainless Steel Bars and Shapes, 2023.
DIN 17440:1996-09, Stainless steels - Technical delivery conditions for plates, hot rolled strip and bars for pressure purposes, drawn wire and forgings, 1996.
AWS A5.9: 2006, Specification for Bare Stainless Steel Welding Electrodes and Rods, American National Standard Institute: 2006.
ISO 14343: 2017, Welding consumables — Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels — Classification, 2017.
DIN 17100: 1980, Steel for General Structure Purposes, 1980.
ASTM A8: 2022, Standard Test Methods for Tension Testing of Metallic Materials, 2022.
M. Nofri, "Analisis ketangguhan antara baja st 37 dan st42 dengan ketebalan dan variasi lapisan karbon fiber untuk kerangka mobil listrik," ed: Presisi, 2019.
R. Wang et al., Joining of 304 stainless steel to PET by semiconductor laser conduction welding, 27 (2023) 5729-5738.
H. Lin, C. J. S. Chou, T. o. Welding, and Joining, Optimisation of the GTA welding process using the Taguchi method and a neural network, 11 (2006) 120-126.
A. Thakur, V. J. A. J. f. S. Nandedkar, and Engineering, Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method, 39 (2014) 1171-1176.
S. Sukarman et al., Optimization of tensile-shear strength in the dissimilar joint of zn-coated steel and low carbon steel, 3 (2020) 115-125.
A. Basit et al., Optimization of TIG welding parameters for tensile load testing on dissimilar material joints of galvanized steel (SGCC) and low carbon steel (SPCC-SD), 22 (2024) 378-382.
