Parametric Analysis and Optimization of Sinker-EDM Process for High Tensile Strength Steel Using Response Surface Methodology
Abstract
This investigation focuses on optimizing the sinker electrical discharge machining (sinker-EDM) process parameters for high tensile strength steel (HTSS), specifically SKD-11, utilizing Box-Behnken Response Surface Methodology (BB-RSM). Sinker-EDM is a commonly used technique in manufacturing moulds, dies, and components for sectors like automotive and aerospace. This process eliminates direct contact between the electrode and the workpiece. However, its low material removal rate (MRR) constrains productivity. This research endeavours to enhance MRR by employing rectangular graphite electrodes. The Box-Behnken Response Surface Methodology (BB-RSM) was utilized to evaluate the effects of pulse current, spark-on time, and gap voltage on MRR. The optimal MRR of 45.49 mm³/min was attained at a pulse current of 16 A, spark-on time of 400 µs, and gap voltage of 45 V. ANOVA revealed that pulse current and spark-on time significantly influenced MRR. In contrast, gap voltage had an insignificant impact. Interaction and surface plot analyses confirmed that high pulse current and extended spark-on time resulted in the maximum MRR. These findings provide valuable insights for optimizing the sinker-EDM process for SHTSS, contributing to enhanced productivity and efficiency in manufacturing.
References
N. K. Singh and Y. Singh, "Experimental Investigation and Modeling of Surface Finish in Argon-Assisted Electrical Discharge Machining Using Dimensional Analysis," Arabian Journal for Science and Engineering, vol. 44, no. 6, pp. 5839-5850, (2019). doi: 10.1007/s13369-019-03738-5
B. Fleming, The Edm How-To Book. Fleming Publications, 2005
G. Kibria and B. Bhattacharyya, "Microelectrical discharge machining of Ti-6Al-4V," in Microfabrication and Precision Engineering, 2017, pp. 99-142. doi: 10.1016/b978-0-85709-485-8.00004-8
J. Vora, S. Khanna, R. Chaudhari, V. K. Patel, S. Paneliya, D. Y. Pimenov, K. Giasin, and C. Prakash, "Machining parameter optimization and experimental investigations of nano-graphene mixed electrical discharge machining of nitinol shape memory alloy," Journal of Materials Research and Technology, vol. 19, pp. 653-668, (2022). doi: 10.1016/j.jmrt.2022.05.076
R. Sheshadri, M. Nagaraj, A. Lakshmikanthan, M. P. G. Chandrashekarappa, D. Y. Pimenov, K. Giasin, R. V. S. Prasad, and S. Wojciechowski, "Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches," Journal of Materials Research and Technology, vol. 14, pp. 2586-2600, (2021). doi: 10.1016/j.jmrt.2021.07.144
E.-H. Hasan, Fundamentals of Machining Processes Conventional and Nonconventional Processes, Third ed. Boca Raton: CRC Press, 2019
C. C. Wang and B. H. Yan, "Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining," Journal of Materials Processing Technology, vol. 102, pp. 90-102, (2000). doi: https://doi.org/10.1016/S0924-0136(99)00423-9
N. M. Elsiti, M. Y. Noordin, and A. U. Alkali, "Fabrication of high aspect ratio micro electrode by using EDM," in IOP Conference Series: Materials Science and Engineering, 2016, vol. 114. doi: 10.1088/1757-899x/114/1/012046
K. Khoirudin, S. Sukarman, N. Rahdiana, A. Suhara, and A. Fauzi, "Optimization of S-EDM Process Parameters on Material Removal Rate Using Copper Electrodes," Jurnal Polimesin, vol. 21, no. 1, (2023). doi: http://dx.doi.org/10.30811/jpl.v21i1.3199
M. Habib, "Microelectrochemical Deposition," in Comprehensive Materials Processing, vol. 11: Elsevier, 2014, pp. 11-523-V11-545. doi: https://doi.org/10.1016/B978-0-08-096532-1.01109-2
G. R. Ribeiro, I. M. F. Bragança, P. A. R. Rosa, and P. A. F. Martins, "A laboratory machine for micro electrochemical machining," in Machining and machine-tools: Woodhead Publishing Limited, 2013, pp. 195-210. doi: https://doi.org/10.1533/9780857092199.195
P. Sahoo and T. K. Barman, "ANN modelling of fractal dimension in machining," in Mechatronics and Manufacturing Engineering, J. P. Davim, Ed. Oxfod: Woodhead Publishing, 2012, pp. 159-226. doi: https://doi.org/10.1533/9780857095893.159
R. Świercz, D. Oniszczuk-Świercz, L. Dąbrowski, and J. Zawora, "Optimization of machining parameters of electrical discharge machining tool steel 1.2713," 2018. doi: 10.1063/1.5056295
E. Aliakbari and H. Baseri, "Optimization of machining parameters in rotary EDM process by using the Taguchi method," The International Journal of Advanced Manufacturing Technology, vol. 62, no. 9-12, pp. 1041-1053, (2012). doi: 10.1007/s00170-011-3862-9
T. Sultan, A. Kumar, and R. D. Gupta, "Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool through Response Surface Methodology," International Journal of Manufacturing Engineering, vol. 2014, pp. 1-16, (2014). doi: 10.1155/2014/259129
S. Chandramouli and K. Eswaraiah, "Optimization of EDM Process parameters in Machining of 17-4 PH Steel using Taguchi Method," Materials Today: Proceedings, vol. 4, no. 2, pp. 2040-2047, (2017). doi: 10.1016/j.matpr.2017.02.049
S. Sumanto, A. Maulana, D. Mulyadi, K. Khoirudin, S. Siswanto, S. Sukarman, A. Suhara, and S. Safril, "Enhancement Material Removal Rate Optimization of Sinker EDM Process Parameters Using a Rectangular Graphite Electrode," Jurnal Optimasi Sistem Industri, vol. 21, no. 2, pp. 87-96, (2022). doi: 10.25077/josi.v21.n2.p87-96.2022
N. Yuvaraj, R. Arshath Raja, P. Palanivel, and N. V. Kousik, "EDM Process by Using Copper Electrode with INCONEL 625 Material," IOP Conference Series: Materials Science and Engineering, vol. 811, no. 1, (2020). doi: 10.1088/1757-899x/811/1/012011
S. Prasad Arikatla, K. Tamil Mannan, and A. Krishnaiah, "Parametric Optimization in Wire Electrical Discharge Machining of Titanium Alloy Using Response Surface Methodology," Materials Today: Proceedings, vol. 4, no. 2, pp. 1434-1441, (2017). doi: 10.1016/j.matpr.2017.01.165
JIS G 4404: Alloy tool steels, 2015.
S. Sukarman, A. Abdulah, A. D. Shieddieque, N. Rahdiana, and K. Khoirudin, "OPTIMIZATION OF THE RESISTANCE SPOT WELDING PROCESS OF SECC-AF AND SGCC GALVANIZED STEEL SHEET USING THE TAGUCHI METHOD," SINERGI, vol. 25, no. 3, pp. 319-328, (2021). doi: http://10.22441/sinergi.2021.3.009
F. Mucharom, R. L. Azizah, A. Suhara, N. Fazrin, A. Amir, B. Kristiawan, T. Triyono, and S. Sukarman, "Tensile shear load in resistance spot welding of dissimilar metals: An optimization study using response surface methodology," Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 66-77, (2023). doi: 10.31603/mesi.9606
S. Sukarman, A. Shieddieque, C. Anwar, N. Rahdiana, and A. Ramadhan, "Optimization of powder coating process parameters in mild steel (SPCC-SD) to improve dry film thickness," Journal of Applied Engineering Science, vol. 19, no. 2, pp. 475-482, (2021). doi: 10.5937/jaes0-26093
P. Shandilya, P. K. Jain, and N. K. Jain, "Parametric Optimization During Wire Electrical Discharge Machining using Response Surface Methodology," Procedia Engineering, vol. 38, pp. 2371-2377, (2012). doi: 10.1016/j.proeng.2012.06.283
Minitab. (2023, 10/12/2023). Overview for Probability Plot.
A. G. Thakur and V. M. Nandedkar, "Optimization of the Resistance Spot Welding Process of Galvanized Steel Sheet Using the Taguchi Method," Arabian Journal for Science and Engineering, vol. 39, no. 2, pp. 1171-1176, (2013). doi: 10.1007/s13369-013-0634-x
K. Vignesh, A. Elaya Perumal, and P. Velmurugan, "Optimization of resistance spot welding process parameters and microstructural examination for dissimilar welding of AISI 316L austenitic stainless steel and 2205 duplex stainless steel," The International Journal of Advanced Manufacturing Technology, vol. 93, no. 1-4, pp. 455-465, (2017). doi: 10.1007/s00170-017-0089-4
P. Muthu, "Optimization of the Process Parameters of Resistance Spot Welding of AISI 316l Sheets Using Taguchi Method," Mechanics and Mechanical Engineering, vol. 23, no. 1, pp. 64-69, (2019). doi: 10.2478/mme-2019-0009
A. Moghanizadeh, "Reducing side overcut in EDM process by changing electrical field between tool and work piece," The International Journal of Advanced Manufacturing Technology, vol. 90, no. 1-4, pp. 1035-1042, (2016). doi: 10.1007/s00170-016-9427-1
M. F. Adnan, A. B. Abdullah, and Z. Samad, "Springback behavior of AA6061 with non-uniform thickness section using Taguchi Method," The International Journal of Advanced Manufacturing Technology, vol. 89, no. 5-8, pp. 2041-2052, (2016). doi: 10.1007/s00170-016-9221-0
A. A. A. Alduroobi, A. M. Ubaid, M. A. Tawfiq, and R. R. Elias, "Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances," International Journal of System Assurance Engineering and Management, vol. 11, no. 6, pp. 1314-1338, (2020). doi: 10.1007/s13198-020-00990-z
G. Smith, "Multiple Regression," in Essential Statistics, Regression, and Econometrics, 2012, pp. 297-331. doi: 10.1016/b978-0-12-382221-5.00010-6
D. L. Mohr, W. J. Wilson, and R. J. Freund, "Multiple Regression," in Statistical Methods, 2022, pp. 351-444. doi: 10.1016/b978-0-12-823043-5.00008-4
T. Y. Badgujar and V. P. Wani, "Stamping Process Parameter Optimization with Multiple Regression Analysis Approach," Materials Today: Proceedings, vol. 5, no. 2, pp. 4498-4507, (2018). doi: 10.1016/j.matpr.2017.12.019
H. Saini, I. Khan, S. Kumar, and S. Kumar, "Optimization of Material Removal Rate of WEDM Process on Mild Steel Using Molybdenum Wire," International Journal of Advanced Engineering, Management and Science, vol. 3, no. 10, pp. 1001-1005, (2017). doi: 10.24001/ijaems.3.10.5
A. Kumar, T. Soota, and J. Kumar, "Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology," Journal of Industrial Engineering International, vol. 14, no. 4, pp. 821-829, (2018). doi: 10.1007/s40092-018-0264-8
S. Gopalakannan and T. Senthilvelan, "Optimization of machining parameters for EDM operations based on central composite design and desirability approach," Journal of Mechanical Science and Technology, vol. 28, no. 3, pp. 1045-1053, (2014). doi: 10.1007/s12206-013-1180-x
R. Bobbili, V. Madhu, and A. K. Gogia, "Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials," Engineering Science and Technology, an International Journal, vol. 18, no. 4, pp. 664-668, (2015). doi: 10.1016/j.jestch.2015.03.014
