Unraveling the Potential of Coconut Shell Activated Carbon for Catalytic Converter Application: A Preliminary Studies of its Optimization through the Assisted of Fuzzy Logic

  • Muhamad Taufik Ulhakim Universitas Buana Perjuangan Karawang
  • Diansyah Marbun Universitas Buana Perjuangan Karawang
  • Sukarman Sukarman Universitas Buana Perjuangan Karawang
  • Agus Supriyanto Universitas Buana Perjuangan Karawang
  • Ade Suhara Universitas Buana Perjuangan Karawang
  • Auliya Rahmatul Ummah Universitas Mulawarman, Samarinda, East Kalimantan, Indonesia
  • Neng Astri Lidiawati Institut Teknologi Bandung, Indonesia
Keywords: Coconut shell, activated carbon, fuzzy logic, catalytic converter, Dynamometer tests

Abstract

Nowadays, researchers focus on developing catalytic converters based on activated carbon (AC) from organic waste to address environmental concerns. This study presents a preliminary investigation into the application of catalytic converters through the synthesis of AC from coconut shells, with optimization achieved through the implementation of fuzzy logic to ascertain the optimal properties of the AC, specifically the activation temperature. The fuzzy logic approach has determined that the optimal activation temperature is 950 °C. The effectiveness of this approach is substantiated by the successful synthesis of AC, as evidenced by XRD, FTIR, and SEM-EDX analysis. The findings indicate that fuzzy logic provides the most accurate activation temperature information, significantly impacting the AC structure. The resulting yield and bulk density values were 26.29% and 0.519 g/ml, respectively. Proximate analysis indicates that the ash content (4.332%), moisture (7.211%), and volatile matter (16.321%) achieve an FCC of 72.136%. The iodine number is a crucial parameter in evaluating the potential application of AC for the catalytic converter. The results demonstrated that the adsorption performance is achieved in 613 mg/g. In conclusion, the AC produced shows considerable potential for use as a catalytic converter. This assertion is substantiated by the successful evaluation of its efficacy in reducing CO and HC, respectively, by approximately 86.04% and 56.79%. To confirm the suitability of the catalytic converter for the vehicle. A series of dynamometer tests were conducted to verify the catalytic converter's performance. The ensuing test results exhibited a decline in torque and power values, yet these measurements remained within acceptable parameters for typical daily utilization.

References

P. Rajakrishnamoorthy et al., “Exhaust emission control of SI engines using ZSM-5 zeolite supported bimetals as a catalyst synthesized from coal fly ash,” Fuel, vol. 340, May 2023, doi: 10.1016/j.fuel.2022.127380.

C. Leishman et al., “Manganese-based catalysts supported on carbon xerogels for the selective catalytic reduction of NOx using a hollow fibre-based reactor,” Catal Today, vol. 423, Nov. 2023, doi: 10.1016/j.cattod.2023.01.026.

Q. Zhao, J. Li, A. Jiao, F. Liu, H. Xu, and X. Liao, “Pollutant emission characteristics of the close-coupled selective catalytic reduction system for diesel engines under low exhaust temperature conditions,” Fuel, vol. 354, Dec. 2023, doi: 10.1016/j.fuel.2023.129303.

D. Yang, Q. Yang, W. Ma, X. Ma, S. Wang, and Y. Lei, “Characteristics of spent automotive catalytic converters and their effects on recycling platinum-group-metals and rare-earth-elements,” Sep Purif Technol, vol. 308, Mar. 2023, doi: 10.1016/j.seppur.2022.122977.

A. Kozina, G. Radica, and S. Nižetić, “Analysis of methods towards reduction of harmful pollutants from diesel engines,” J Clean Prod, vol. 262, Jul. 2020, doi: 10.1016/j.jclepro.2020.121105.

S. Singha, M. I. Hossain, T. H. Toushi, and J. N. Nimu, “Catalytic Converter and Its Revolution for Automobile Exhaust Emissions: A Review,” 2022.

B. Zhang, X. Li, Q. Wan, B. Liu, G. Jia, and Z. Yin, “Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine,” Energy, vol. 262, Jan. 2023, doi: 10.1016/j.energy.2022.125445.

D. J. Deka, J. A. Pihl, C. R. Thomas, and W. P. Partridge, “Intra-catalyst CH4 oxidation pathways on a Pd/Al2O3/CeZrOx-based commercial catalyst and implications on NOx conversion profiles for a natural gas vehicle exhaust under lambda modulation,” Chemical Engineering Journal, vol. 472, Sep. 2023, doi: 10.1016/j.cej.2023.144803.

P. N. R. Vennestrøm, J. R. Thøgersen, P. L. T. Gabrielsson, L. Van Tendeloo, F. W. Schütze, and M. Moliner, “Advances and perspectives from a decade of collaborative efforts on zeolites for selective catalytic reduction of NOx,” Microporous and Mesoporous Materials, vol. 358, Aug. 2023, doi: 10.1016/j.micromeso.2022.112336.

Z. Zhang et al., “Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine,” Energy, vol. 277, Aug. 2023, doi: 10.1016/j.energy.2023.127634.

L. Sun et al., “Double-stable Ce-based oxide: Capturing atomic precious metals via Ostwald ripening for multicomponent three-way catalysts construction,” Molecular Catalysis, vol. 554, Feb. 2024, doi: 10.1016/j.mcat.2023.113808.

G. Brinklow et al., “Non-carbon greenhouse gas emissions for hybrid electric vehicles: three-way catalyst nitrous oxide and ammonia trade-off,” International Journal of Environmental Science and Technology, vol. 20, no. 11, pp. 12521–12532, Nov. 2023, doi: 10.1007/s13762-023-04848-2.

S. Sharma Gunasekaran, S. Manivannan, and P. Ramakrishnan, “An experimental investigation on regulated and unregulated emissions of a gasohol fueled SI engine with a novel three way catalytic converter,” Journal Europeen des Systemes Automatises, vol. 53, no. 2, pp. 219–224, Apr. 2020, doi: 10.18280/jesa.530208.

N. Udhayakumar, S. Ramesh Babu, R. Bharathwaaj, and R. Sathyamurthy, “An experimental study on emission characteristics in compression ignition engine with silver and zinc coated catalytic converter,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 4959–4964. doi: 10.1016/j.matpr.2021.04.314.

C. Özyalcin, S. Sterlepper, S. Roiser, H. Eichlseder, and S. Pischinger, “Exhaust gas aftertreatment to minimize NOX emissions from hydrogen-fueled internal combustion engines,” Appl Energy, vol. 353, Jan. 2024, doi: 10.1016/j.apenergy.2023.122045.

A. M. Moschovi et al., “First of its kind automotive catalyst prepared by recycled pgms-catalytic performance,” Catalysts, vol. 11, no. 8, Aug. 2021, doi: 10.3390/catal11080942.

R. S. Kumar and S. S. Kumaran, “NOx, CO & HC control by adopting activated charcoal enriched filter in catalytic converter of diesel engine,” Mater Today Proc, vol. 22, pp. 2283–2290, 2020, [Online]. Available: www.sciencedirect.com

T. K. Kurse, R. B. Nallamothu, and M. Liben, “Reduction of Harmful Emissions from IC Engines using Hybrid Aqua Charcoal Replacing both Silencer and Catalytic Converter,” Journal of Offshore Structure and Technology, vol. 7, no. 3, pp. 1–5, 2020, [Online]. Available: www.stmjournals.com

J. Akinbomi, Salami, and Moshood, “Generator Exhausts Control in Nigeria using Activated Carbon from Discarded Rubber Tyres,” International Journal of Engineering Research and Technology (IJERT), vol. 11, no. 02, pp. 100–107, 2022, [Online]. Available: www.ijert.org

A. Hamid et al., “An Improvement of Catalytic Converter Activity Using Copper Coated Activated Carbon Derived from Banana Peel,” International Journal of Renewable Energy Development, vol. 12, no. 1, pp. 144–154, Jan. 2023, doi: 10.14710/ijred.2023.48739.

Ya’ Muhammad Arsyad et al., “Effect of TiO2 on Orange Peel Activated Carbon Composite in Reducing Carbon Monoxide and Hydrocarbon Gas Emissions,” Jurnal Ilmu Fisika, vol. 15, no. 2, pp. 73–80, Apr. 2023, doi: 10.25077/jif.15.2.73-80.2023.

A. S. Elkholy, M. S. Yahia, M. A. Elnwawy, H. A. Gomaa, and A. S. Elzaref, “Synthesis of activated carbon composited with Egyptian black sand for enhanced adsorption performance toward methylene blue dye,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-28556-6.

A. Hamid et al., “Pemanfaatan Karbon Aktif dari Limbah Kulit Pisang untuk Catalytic Converter pada Mesin Diesel,” Jurnal Rekayasa Mesin, vol. 12, no. 3, pp. 709–716, Dec. 2021, doi: 10.21776/ub.jrm.2021.012.03.20.

D. Ahmad Fajri, A. Ghofur, and P. Studi Teknik Mesin, “Pengaruh Arang Kayu Ulin Sebagai Catalytic Converter Terhadap Emisi Gas Buang dan Konsumsi Bahan Bakar Pada Mesin Toyota Kijang 5K,” JTAM Rotary, vol. 3, no. 2, 2021, [Online]. Available: https://ppjp.ulm.ac.id/journals/index.php/rot

A. Sulton and A. Ghofur, “Pengaruh Penggunaan Catalytic Converter Berbahan Arang Kayu Alaban Dengan Aditif Tembaga (Cu) Terhadap Emisi Gas Buang Dan Konsumsi Bahan Bakar Pada Toyota Kijang 5K,” JTAM Rotary, vol. 3, no. 1, 2021, [Online]. Available: https://ppjp.ulm.ac.id/journals/index.php/rot

H. K. Yağmur and İ. Kaya, “Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue,” J Mol Struct, vol. 1232, May 2021, doi: 10.1016/j.molstruc.2021.130071.

S. Wang et al., “Halloysite and coconut shell biochar magnetic composites for the sorption of Pb(II) in wastewater: Synthesis, characterization and mechanism investigation,” J Environ Chem Eng, vol. 9, no. 6, Dec. 2021, doi: 10.1016/j.jece.2021.106865.

T. R. Brazil, M. Gonçalves, M. S. O. Junior, and M. C. Rezende, “A statistical approach to optimize the activated carbon production from Kraft lignin based on conventional and microwave processes,” Microporous and Mesoporous Materials, vol. 308, Dec. 2020, doi: 10.1016/j.micromeso.2020.110485.

W. Spencer, G. Senanayake, M. Altarawneh, D. Ibana, and A. N. Nikoloski, “Review of the effects of coal properties and activation parameters on activated carbon production and quality,” Jul. 15, 2024, Elsevier Ltd. doi: 10.1016/j.mineng.2024.108712.

M. Gayathiri, T. Pulingam, K. T. Lee, and K. Sudesh, “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism,” May 01, 2022, Elsevier Ltd. doi: 10.1016/j.chemosphere.2022.133764.

A. Chakraborty, A. Pal, and B. B. Saha, “A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent,” Dec. 01, 2022, MDPI. doi: 10.3390/ma15248818.

G. Rajkumar et al., “Parametric Optimization of Powder-Mixed EDM of AA2014/Si3N4/Mg/Cenosphere Hybrid Composites Using Fuzzy Logic: Analysis of Mechanical, Machining, Microstructural, and Morphological Characterizations,” Journal of Composites Science, vol. 7, no. 9, Sep. 2023, doi: 10.3390/jcs7090380.

Y. Wang, Z. Wang, and G. G. Wang, “Hierarchical learning particle swarm optimization using fuzzy logic,” Expert Syst Appl, vol. 232, Dec. 2023, doi: 10.1016/j.eswa.2023.120759.

H. Javadian, M. Ghasemi, M. Ruiz, A. M. Sastre, S. M. H. Asl, and M. Masomi, “Fuzzy logic modeling of Pb (II) sorption onto mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite prepared by ultrasound-assisted co-precipitation technique,” Ultrason Sonochem, vol. 40, pp. 748–762, Jan. 2018, doi: 10.1016/j.ultsonch.2017.08.022.

Mohammad Ghassan Alghifari et al., “Implementation and Comparison of Coffee Bean Drying Temperature SettingsBased on Fuzzy Logic,” Journal of Applied Science, Technology & Humanities, vol. 1, no. 5, pp. 493–507, Nov. 2024, doi: 10.62535/cj817x36.

O. Ofe, A. Ajayi, U. Bagaye, and E. AGBON, “Empirical Investigative Analysis on the Effect of Triangular and Gaussian Membership Function on Fuzzy-based Controlled Vehicle Platooning,” Nigerian Journal of Engineering, vol. 30, no. 3, p. 28, 2023, doi: 10.5455/nje.2023.30.03.05.

F. C. Jong and M. M. Ahmed, “Novel GIS-based fuzzy TOPSIS and filtration algorithms for extra-large scale optimal solar energy sites identification,” Solar Energy, vol. 268, Jan. 2024, doi: 10.1016/j.solener.2023.112274.

E. Natarajan, F. Augustin, M. K. A. Kaabar, C. R. Kenneth, and K. Yenoke, “Various defuzzification and ranking techniques for the heptagonal fuzzy number to prioritize the vulnerable countries of stroke disease,” Results in Control and Optimization, vol. 12, Sep. 2023, doi: 10.1016/j.rico.2023.100248.

S. J. Rajasekaran and V. Raghavan, “Facile synthesis of activated carbon derived from Eucalyptus globulus seed as efficient electrode material for supercapacitors,” Diam Relat Mater, vol. 109, Nov. 2020, doi: 10.1016/j.diamond.2020.108038.

X. L. Tian, J. H. Yu, L. Qiu, Y. H. Zhu, and M. Q. Zhu, “Structural changes and electrochemical properties of mesoporous activated carbon derived from Eucommia ulmoides wood tar by KOH activation for supercapacitor applications,” Ind Crops Prod, vol. 197, Jul. 2023, doi: 10.1016/j.indcrop.2023.116628.

E. H. Sujiono et al., “Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application,” Results Chem, vol. 4, Jan. 2022, doi: 10.1016/j.rechem.2022.100291.

S. Z. Naji and C. T. Tye, “A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification,” Energy Conversion and Management: X, vol. 13, Jan. 2022, doi: 10.1016/j.ecmx.2021.100152.

W. S. Muleta, S. M. Denboba, and A. B. Bayu, “Corncob-supported calcium oxide nanoparticles from hen eggshells for cadmium (Cd-II) removal from aqueous solutions; Synthesis and characterization,” Heliyon, vol. 10, no. 6, Mar. 2024, doi: 10.1016/j.heliyon.2024.e27767.

I. Neme, G. Gonfa, and C. Masi, “Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4,” Results in Materials, vol. 15, Sep. 2022, doi: 10.1016/j.rinma.2022.100304.

N. Bouchelkia et al., “Jujube stones based highly efficient activated carbon for methylene blue adsorption: Kinetics and isotherms modeling, thermodynamics and mechanism study, optimization via response surface methodology and machine learning approaches,” Process Safety and Environmental Protection, vol. 170, pp. 513–535, Feb. 2023, doi: 10.1016/j.psep.2022.12.028.

N. R. Ca Ndido, M. J. Prauchner, A. D. O. Vilela, and V. N. M. D. Pasa, “The use of gases generated from eucalyptus carbonization as activating agent to produce activated carbon: An integrated process,” J Environ Chem Eng, vol. 8, no. 4, Aug. 2020, doi: 10.1016/j.jece.2020.103925.

D. Dimbo et al., “Methylene blue adsorption from aqueous solution using activated carbon of spathodea campanulata,” Results in Engineering, vol. 21, Mar. 2024, doi: 10.1016/j.rineng.2024.101910.

A. Ibrahim et al., “Preparation and characterization of activated carbon obtained from Melaleuca cajuputi leaves,” Carbon Trends, vol. 13, Dec. 2023, doi: 10.1016/j.cartre.2023.100301.

T. C. Egbosiuba et al., “Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics,” Chemical Engineering Research and Design, vol. 153, pp. 315–336, Jan. 2020, doi: 10.1016/j.cherd.2019.10.016.

J. Fito, S. Tibebu, and T. T. I. Nkambule, “Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology,” BMC Chem, vol. 17, no. 1, Dec. 2023, doi: 10.1186/s13065-023-00913-6.

E. R. Raut, M. A. Bedmohata, and A. R. Chaudhari, “Comparative study of preparation and characterization of activated carbon obtained from sugarcane bagasse and rice husk by using H3PO4 and ZnCl2,” in Materials Today: Proceedings, Elsevier Ltd, Jan. 2022, pp. 1875–1884. doi: 10.1016/j.matpr.2022.05.413.

W. Spencer, D. Ibana, P. Singh, and A. N. Nikoloski, “Effect of Surface Area, Particle Size and Acid Washing on the Quality of Activated Carbon Derived from Lower Rank Coal by KOH Activation,” Sustainability, vol. 16, no. 14, p. 5876, Jul. 2024, doi: 10.3390/su16145876.

S. Shabir, S. Z. Hussain, T. A. Bhat, T. Amin, M. Beigh, and S. Nabi, “High Carbon content Microporous Activated Carbon from Thin Walnut Shells: Optimization, Physico-Chemical Analysis and Structural Profiling",” Process Safety and Environmental Protection, Jun. 2024, doi: 10.1016/j.psep.2024.06.121.

X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, and J. Ran, “Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review,” Sep Purif Technol, vol. 235, Mar. 2020, doi: 10.1016/j.seppur.2019.116213.

M. Şirazi and S. Aslan, “Comprehensive characterization of high surface area activated carbon prepared from olive pomace by KOH activation,” Chem Eng Commun, vol. 208, no. 10, pp. 1479–1493, 2021, doi: 10.1080/00986445.2020.1864628.

S. Dey and G. Chandra Dhal, “Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter,” Sep. 01, 2020, Elsevier Ltd. doi: 10.1016/j.mtchem.2020.100282.

X. Liang et al., “Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications,” Oct. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/polym16192755.

L. Ifa, N. Nurjannah, T. Syarif, and D. Darnengsih, Bioadsorben dan Aplikasinya. Yayasan Pendidikan Cendekia Muslim, 2021. [Online]. Available: https://www.researchgate.net/publication/357393346

L. Ni`mah et al., “Karakteristik Karbon Aktif Teraktifasi HᴣPO4 dari Limbah Sereh (Cymbopogon S.P),” Journal of Chemical Process Engineering, vol. 9, no. 1, pp. 60–69, May 2024, doi: 10.33096/jcpe.v9i1.686.

R. Kabir Ahmad, S. Anwar Sulaiman, S. Yusup, S. Sham Dol, M. Inayat, and H. Aminu Umar, “Exploring the potential of coconut shell biomass for charcoal production,” Ain Shams Engineering Journal, vol. 13, no. 1, Jan. 2022, doi: 10.1016/j.asej.2021.05.013.

M. Om Prakash, G. Raghavendra, S. Ojha, and M. Panchal, “Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 1476–1481. doi: 10.1016/j.matpr.2020.05.370.

J. Long, P. He, K. Przystupa, Y. Wang, and O. Kochan, “Preparation of Oily Sludge-Derived Activated Carbon and Its Adsorption Performance for Tetracycline Hydrochloride,” Molecules, vol. 29, no. 4, Feb. 2024, doi: 10.3390/molecules29040769.

D. R. Lobato-Peralta et al., “Advances in activated carbon modification, surface heteroatom configuration, reactor strategies, and regeneration methods for enhanced wastewater treatment,” J Environ Chem Eng, vol. 9, no. 4, Aug. 2021, doi: 10.1016/j.jece.2021.105626.

L. Ge et al., “An analysis of the carbonization process of coal-based activated carbon at different heating rates,” Energy, vol. 267, Mar. 2023, doi: 10.1016/j.energy.2022.126557.

H. A. Baloch et al., “Catalytic upgradation of bio-oil over metal supported activated carbon catalysts in sub-supercritical ethanol,” J Environ Chem Eng, vol. 9, no. 2, Apr. 2021, doi: 10.1016/j.jece.2021.105059.

A. Rana and T. A. Saleh, “An investigation of polymer-modified activated carbon as a potential shale inhibitor for water-based drilling muds,” J Pet Sci Eng, vol. 216, Sep. 2022, doi: 10.1016/j.petrol.2022.110763.

B. Shoukat et al., “Microwaves assisted deconstruction of HDPE waste into structured carbon and hydrogen fuel using Al2O3-(Ni, Zn, Mg)Fe2O4 composite catalysts,” Thermal Science and Engineering Progress, vol. 47, Jan. 2024, doi: 10.1016/j.tsep.2023.102368.

S. M. Waly, A. M. El-Wakil, W. M. A. El-Maaty, and F. S. Awad, “Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon,” Journal of Saudi Chemical Society, vol. 25, no. 8, Aug. 2021, doi: 10.1016/j.jscs.2021.101296.

H. Nath, J. Das, C. Debnath, B. Sarkar, R. Saxena, and S. D. Barma, “Development of lignocellulosic biomass derived Cu and Zn doped highly porous activated carbon and its utilization in the anti-microbial treatment,” Environmental Chemistry and Ecotoxicology, vol. 5, pp. 155–164, Jan. 2023, doi: 10.1016/j.enceco.2023.07.001.

H. Nath, J. Das, C. Debnath, B. Sarkar, R. Saxena, and S. D. Barma, “Development of lignocellulosic biomass derived Cu and Zn doped highly porous activated carbon and its utilization in the anti-microbial treatment,” Environmental Chemistry and Ecotoxicology, vol. 5, pp. 155–164, Jan. 2023, doi: 10.1016/j.enceco.2023.07.001.

A. T. Adeleye et al., “Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach,” Apr. 25, 2021, Korean Society of Industrial Engineering Chemistry. doi: 10.1016/j.jiec.2021.01.044.

D. Cendekia, D. Ayu Afifah, and W. Hanifah, “Linearity Graph in the Prediction of Granular Active Carbon (GAC) Adsorption Ability,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1755-1315/1012/1/012079.

Published
2025-02-15
How to Cite
Taufik Ulhakim, M., Marbun, D., Sukarman, S., Supriyanto, A., Suhara, A., Ummah, A. R., & Lidiawati, N. A. (2025). Unraveling the Potential of Coconut Shell Activated Carbon for Catalytic Converter Application: A Preliminary Studies of its Optimization through the Assisted of Fuzzy Logic. Jurnal Teknik Mesin Mechanical Xplore, 5(2), 51-68. https://doi.org/10.36805/jtmmx.v5i2.9013