Main Article Content

Abstract

The design of vapor compression type distillation using the design for manufacture and assembly (DFMA) method was discussed in this article. The efficacy of seawater desalination is the primary source of non-conventional fresh water in a large number of countries around the world. The distillation process can satisfy the demands for high-quality fresh water by utilizing seawater. DFMA is a technique for product development and improvement that could be used to simplify the manufacturing process and reduce assembly costs. This research focuses on creating an effective vapor compression-type desalination device. The DFMA method is used in this reverse engineering study. According to the findings of this study, the total assembly time of 22 components was 7932 seconds. Compared to the previous process, processing time efficiency increased by 4.1 %.

Keywords

DFMA Desalination Reverse engineering Vapor compression

Article Details

How to Cite
Santosa, I., Firdaus, A., Hidayat, R., Rusnoto, R., Wibowo, A., & Mubina Dewadi, F. (2022). The Optimization of Vapor Compression Type for Desalination of Seawater Using the DFMA Method. Jurnal Teknik Mesin Mechanical Xplore, 3(1), 1-8. https://doi.org/10.36805/jtmmx.v3i1.2378

References

  1. [1] M. Faegh, P. Behnam, and M. B. Shafii, “A review on recent advances in humidification-dehumidification (HDH) desalination systems integrated with refrigeration, power and desalination technologies,” Energy Convers. Manag., vol. 196, no. April, pp. 1002–1036, 2019.
  2. [2] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. Turnure, and L. Westfall, “International energy outlook 2016 with projections to 2040,” Washington, DC (United States), 2016.
  3. [3] H. R. Datsgerdi and H. T. Chua, “Thermo-economic analysis of low-grade heat driven multi-effect distillation based desalination processes,” Desalination, vol. 448, no. September, pp. 36–48, 2018.
  4. [4] R. Handoko, “Perbaikan Fabrikasi Pallet Box Dengan Design for Manufacturing (Dfm) Untuk Meminimasi Biaya Produksi Dan Kualitas,” J. Tek. Ind., vol. 5, no. 3, pp. 85–92, 2015.
  5. [5] C. Kong, H. Lee, and H. Park, “Design and manufacturing of automobile hood using natural composite structure,” Compos. Part B Eng., vol. 91, pp. 18–26, 2016.
  6. [6] D. Y. Negroni and L. G. Trabasso, “A quality improving method to assist the Integrated Product Development process,” DS 58-7 Proc. ICED 09, 17th Int. Conf. Eng. Des., pp. 127–136, 2009.
  7. [7] R. LeSar and R. LeSar, “Materials selection and design,” Introd. to Comput. Mater. Sci., pp. 269–278, 2013.
  8. [8] Y. Hasibuan, A. M. Rambe, and R. Ginting, “Rancangan Perbaikan Stopcontact Melalui Pendekatan Metode Dfma (Design for Manufacturing and Assembly) Pada Pt. Xyz,” J. Tek. Ind. USU, vol. 1, no. 2, pp. 34–39, 2013.
  9. [9] B. Ibrahim, “PERANCANGAN ULANG TOOL HOLDER UNTUK ALUR DOVETAIL PADA RAGUM POLMAN 125,” pp. 1–7, 2014
  10. [10] I. Santosa, G. R. Wilis, and U. Mulyadi, “Soy milk filter design using DFMA method,” IOP Conf. Ser. Earth Environ. Sci., vol. 755, no. 1, 2021.
  11. [11] G. Boothroyd, “Product design for manufacture and assembly,” Comput. Des., vol. 26, no. 7, pp. 505–520, 1994.
  12. [12] A. Abid et al., “Exergoeconomic optimization of a forward feed multi-effect desalination system with and without energy recovery,” Desalination, vol. 499, no. September 2020, p. 114808, 2021.
  13. [13] A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, and A. Cipollina, “Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications,” Desalination, vol. 434, no. December 2017, pp. 121–160, 2018.
  14. [14] N. Rahdiana, F. Majid, and A. Astuti, “Perancangan Alat Pemanen Padi Ergonomis untuk Meningkatkan Efisiensi Proses Panen dengan Pendekatan Antropometri dan Reverse Engineering,” Tekmapro J. Ind. Eng. Manag., vol. 16, no. 02, pp. 108–118, 2021.
  15. [15] S. Asri, “Efisiensi Konsentrasi Perekat Tepung Tapioka Terhadap Nilai Kalor Pembakaran pada Biobriket Batang Jagung (Zea mays L.),” J. Teknosains, vol. 7, pp. 78–89, 2013.
  16. [16] ASTM International, Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, vol. 93, no. Reapproved. America, 2000, pp. 2–6.
  17. [17] JIS G 3302, “JIS G 3302 Hot-dip zinc-coated steel sheet and strip.” Japanese Industrial Standard, 2007.
  18. [18] S. Sukarman, A. Abdulah, A. D. Shieddieque, N. Rahdiana, and K. Khoirudin, “OPTIMIZATION OF THE RESISTANCE SPOT WELDING PROCESS OF SECC-AF AND SGCC GALVANIZED STEEL SHEET USING THE TAGUCHI METHOD,” SINERGI, vol. 25, no. 3, pp. 319–328, 2021.
  19. [19] M. Ramadhan Cahya and A. Abdulah, “Analisis Terjadinya Korosi Batas Butir Akibat Proses Pengelasan Gtaw Pada Material Austenitic Stainless Steel Aisi a304,” J. Teknol., 2019
  20. [20] Sukarman, C. Anwar, N. Rahdiana, and A. I. Ramadhan, “ANALISIS PENGARUH RADIUS DIES TERHADAP SPRINGBACK LOGAM LEMBARAN STAINLESS-STEEL PADA PROSES BENDING HIDROLIK V-DIE,” Junal Teknol., vol. 12, no. 2, 2020.
  21. [21] L. Paradeshi, M. Mohanraj, M. Srinivas, and S. Jayaraj, “Exergy analysis of direct-expansion solar-assisted heat pumps working with R22 and R433A,” J. Therm. Anal. Calorim., vol. 134, no. 3, pp. 2223–2237, 2018.