ANTIHIPERPIGMENTASI Hylocereus costaricensis MELALUI INHIBISI TIROSINASE: STUDI NETWORK PHARMACOLOGY DAN MOLECULAR DOCKING
Abstract
Hyperpigmentation was driven by increased melanogenesis and oxidative stress, creating a need for effective and safe depigmenting candidates. This study aimed to identify bioactive compounds from Hylocereus costaricensis, to map hyperpigmentation-related targets and pathways using network pharmacology, and to evaluate the binding potential of selected compounds to a melanogenesis target using molecular docking. The workflow included compound screening and drug-likeness/ADMET evaluation, prediction of compound targets and hyperpigmentation-associated genes, construction of compound–target–disease and protein–protein interaction networks, topological and GO/KEGG enrichment analyses, and docking to TYRP1 (PDB: 5M8O). Five main candidates, namely 2,2-dimethyl-3-phenylpropanoic acid, ferulic acid, o-coumaric acid, p-coumaric acid, and vanillic acid, have met the initial criteria. Network pharmacology highlighted a multi-target mechanism by prioritizing key nodes including AKT1, EGFR, PIK3CA, TYR, and CDK4 and by indicating enriched signaling pathways relevant to pigmentation regulation and oxidative-stress responses. Docking results showed moderate affinities, with binding energies of approximately −6.551 to −6.184 kcal/mol and estimated inhibition constants of 15.779 to 29.315 µM, and 2,2-dimethyl-3-phenylpropanoic acid yielded the best score among the tested ligands. Overall, the integrated network pharmacology–docking strategy provided a rational prioritization of compounds and targets for developing anti-hyperpigmentation agents derived from H. costaricensis; however, the evidence remained preliminary and required further experimental validation and mechanistic confirmation.
References
Alifah, L. H., Jatmika, C., dan Hayun, H. (2023). Exploration of Ferulic Acid and Its Derivatives as Potent Anti-Tyrosinase: A Systematic Review. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2023.229107.8427
Allouche, J., Rachmin, I., Adhikari, K., Pardo, L. M., Lee, J. H., McConnell, A. M., Kato, S., Fan, S., Kawakami, A., Suita, Y., Wakamatsu, K., Igras, V., Zhang, J., Navarro, P. P., Lugo, C. M., Noonan, H. R., Christie, K. A., Itin, K., Mujahid, N., … Roider, E. (2021). NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell, 184(16), 4268-4283.e20. https://doi.org/10.1016/j.cell.2021.06.022
An, S. M., Koh, J., dan Boo, Y. C. (2010). p‐coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytotherapy Research, 24(8), 1175–1180. https://doi.org/10.1002/ptr.3095
Baber, M. A., Crist, C. M., Devolve, N. L., dan Patrone, J. D. (2023). Tyrosinase Inhibitors: A Perspective. Molecules, 28(15), 5762. https://doi.org/10.3390/molecules28155762
Baell, J. B., dan Holloway, G. A. (2010). New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
Bao, M., Gempeler, M., dan Campiche, R. (2025). Melanosome Transport and Processing in Skin Pigmentation: Mechanisms and Targets for Pigmentation Modulation. International Journal of Molecular Sciences, 26(17), 8630. https://doi.org/10.3390/ijms26178630
Byun, K.-A., Lee, S. Y., Oh, S., Batsukh, S., Jang, J.-W., Lee, B.-J., Rheu, K., Li, S., Jeong, M.-S., Son, K. H., dan Byun, K. (2024). Fermented Fish Collagen Attenuates Melanogenesis via Decreasing UV-Induced Oxidative Stress. Marine Drugs, 22(9), 421. https://doi.org/10.3390/md22090421
Caminero Gomes Soares, A., Marques Sousa, G. H., Calil, R. L., dan Goulart Trossini, G. H. (2023). Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Molecular Informatics, 42(11). https://doi.org/10.1002/minf.202300115
Coelho, V. S., de Moura, D. G., Aguiar, L. L., Ribeiro, L. V., Silva, V. D. M., da Veiga Correia, V. T., Melo, A. C., Silva, M. R., de Paula, A. C. C. F. F., de Araújo, R. L. B., dan Melo, J. O. F. (2024). The Profile of Phenolic Compounds Identified in Pitaya Fruits, Health Effects, and Food Applications: An Integrative Review. Plants, 13(21), 3020. https://doi.org/10.3390/plants13213020
Contardi, M., Lenzuni, M., Fiorentini, F., Summa, M., Bertorelli, R., Suarato, G., dan Athanassiou, A. (2021). Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics, 13(7), 999. https://doi.org/10.3390/pharmaceutics13070999
Daina, A., Michielin, O., dan Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
Dass, K., Prakash, N., Manogar, P., dan Murugesan, R. (2024). Current insights and future perspectives of In silico molecular docking in dengue virus proteins inhibition: A review. Aspects of Molecular Medicine, 4, 100050. https://doi.org/10.1016/j.amolm.2024.100050
Gillbro, J. M., dan Olsson, M. J. (2011). The melanogenesis and mechanisms of skin‐lightening agents – existing and new approaches. International Journal of Cosmetic Science, 33(3), 210–221. https://doi.org/10.1111/j.1468-2494.2010.00616.x
Han, S.-Y., Jang, T.-W., Park, H.-J., Oh, S.-S., Lee, J.-B., Myoung, S.-M., dan Park, J.-H. (2022). Nypa fruticans Wurmb inhibits melanogenesis in isobutylmethylxanthine treated melanoma via the PI3K/AKT/mTOR/CREB and MAPK signaling pathways. Experimental and Therapeutic Medicine, 24(6), 754. https://doi.org/10.3892/etm.2022.11691
Hopkins, A. L. (2008). Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118
Hosseini, M., Chen, W., Xiao, D., dan Wang, C. (2021). Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precision Clinical Medicine, 4(1), 1–16. https://doi.org/10.1093/pcmedi/pbab001
Hung, C., Nguyen, T. T. T., Poulikakos, P. I., dan Polsky, D. (2025). Recent Developments in Targeting the Cell Cycle in Melanoma. Cancers, 17(8), 1291. https://doi.org/10.3390/cancers17081291
Jang, S., Ha, C.-W., Kim, S.-H., Choi, J. H., Namkoong, S., Hong, S., Koo, H. J., Kim, Y.-K., Hadiwidjaja, M., Lee, S. R., dan Sohn, E.-H. (2024). Dual suppressive effect of p-coumaric acid on pigmentation in B16F10 cells. Molecular dan Cellular Toxicology, 20(4), 1011–1023. https://doi.org/10.1007/s13273-024-00430-0
Jin, W., Stehbens, S. J., Barnard, R. T., Blaskovich, M. A. T., dan Ziora, Z. M. (2024). Dysregulation of tyrosinase activity: a potential link between skin disorders and neurodegeneration. Journal of Pharmacy and Pharmacology, 76(1), 13–22. https://doi.org/10.1093/jpp/rgad107
Kabir, A., dan Muth, A. (2022). Polypharmacology: The science of multi-targeting molecules. Pharmacological Research, 176, 106055. https://doi.org/10.1016/j.phrs.2021.106055
Lai, X., Wichers, H. J., Soler‐Lopez, M., dan Dijkstra, B. W. (2017). Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angewandte Chemie International Edition, 56(33), 9812–9815. https://doi.org/10.1002/anie.201704616
Lai, X., Wichers, H. J., Soler-López, M., dan Dijkstra, B. W. (2020). Phenylthiourea Binding to Human Tyrosinase-Related Protein 1. International Journal of Molecular Sciences, 21(3), 915. https://doi.org/10.3390/ijms21030915
Le, N. L. (2022). Functional compounds in dragon fruit peels and their potential health benefits: a review. International Journal of Food Science dan Technology, 57(5), 2571–2580. https://doi.org/10.1111/ijfs.15111
Li, A., He, H., Chen, Y., Liao, F., Tang, J., Li, L., Fan, Y., Li, L., dan Xiong, L. (2023). Effects of donkey milk on UVB-induced skin barrier damage and melanin pigmentation: A network pharmacology and experimental validation study. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1121498
Liu, J., Xu, X., Zhou, J., Sun, G., Li, Z., Zhai, L., Wang, J., Ma, R., Zhao, D., Jiang, R., dan Sun, L. (2023). Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways. Journal of Ginseng Research, 47(6), 714–725. https://doi.org/10.1016/j.jgr.2023.05.002
Magiera, A., Kołodziejczyk-Czepas, J., dan Olszewska, M. A. (2025). Antioxidant and Anti-Inflammatory Effects of Vanillic Acid in Human Plasma, Human Neutrophils, and Non-Cellular Models In Vitro. Molecules, 30(3), 467. https://doi.org/10.3390/molecules30030467
Mulyati, A. H., Nurmayani, R., Widiastuti, D., Warnasih, S., dan Sinaga, S. E. (2025). Antioxidant Potential and Active Compound Identification of Hylocereus costaricensis and Hylocereus undatus Peel Extracts using LC-MS/MS. Chimica et Natura Acta, 13(2), 175–184. https://doi.org/10.24198/cna.v13.n2.61186
Nakamura, H., dan Fukuda, M. (2024). Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Scientific Reports, 14(1), 2529. https://doi.org/10.1038/s41598-024-53072-6
Oh, S.-Y., dan Hyun, C.-G. (2025). Umckalin Promotes Melanogenesis in B16F10 Cells Through the Activation of Wnt/β-Catenin and MAPK Signaling Pathways. Applied Biosciences, 4(2), 20. https://doi.org/10.3390/applbiosci4020020
Ohbayashi, N., dan Fukuda, M. (2020). Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000Research, 9, 608. https://doi.org/10.12688/f1000research.24625.1
Pollock, S., Taylor, S., Oyerinde, O., Nurmohamed, S., Dlova, N., Sarkar, R., Galadari, H., Manela-Azulay, M., Chung, H. S., Handog, E., dan Kourosh, A. S. (2021). The dark side of skin lightening: An international collaboration and review of a public health issue affecting dermatology. International Journal of Women’s Dermatology, 7(2), 158–164. https://doi.org/10.1016/j.ijwd.2020.09.006
Shah, T. A., dan Etui, I. D. (2023). GEF #10810: Eliminating Mercury Skin Lightening Products Global Kick-off Meeting and Stakeholder Consultation. World Health Organisation Headquarters.
Touni, A. A., Shivde, R. S., Echuri, H., Abdel-Aziz, R. T. A., Abdel-Wahab, H., Kundu, R. V., dan Le Poole, I. C. (2023). Melanocyte-keratinocyte cross-talk in vitiligo. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1176781
Wagatsuma, T., Suzuki, E., Shiotsu, M., Sogo, A., Nishito, Y., Ando, H., Hashimoto, H., Petris, M. J., Kinoshita, M., dan Kambe, T. (2023). Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Communications Biology, 6(1), 403. https://doi.org/10.1038/s42003-023-04640-5
Xu, P., Yang, L., Lai, S., Yang, F., Kuroda, Y., Zhang, H., Tsuruta, D., dan Katayama, I. (2024). Effects of EGFR‐TKI on epidermal melanin unit integrity: Therapeutic implications for hypopigmented skin disorders. Pigment Cell dan Melanoma Research, 37(4), 514–529. https://doi.org/10.1111/pcmr.13171
Yang, H.-L., Lin, C.-P., Vudhya Gowrisankar, Y., Huang, P.-J., Chang, W.-L., Shrestha, S., dan Hseu, Y.-C. (2021). The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Biochemical Pharmacology, 185, 114454. https://doi.org/10.1016/j.bcp.2021.114454
Yu, Q., dan Fan, L. (2021). Understanding the combined effect and inhibition mechanism of 4-hydroxycinnamic acid and ferulic acid as tyrosinase inhibitors. Food Chemistry, 352, 129369. https://doi.org/10.1016/j.foodchem.2021.129369
Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., dan Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767
Zolghadri, S., Beygi, M., Mohammad, T. F., Alijanianzadeh, M., Pillaiyar, T., Garcia-Molina, P., Garcia-Canovas, F., Munoz-Munoz, J., dan Saboury, A. A. (2023). Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochemical Pharmacology, 212, 115574. https://doi.org/10.1016/j.bcp.2023.115574





