Implementation of Orange Data Mining to Predict Student Graduation on Time at Pringsewu Muhammadiyah University
DOI:
https://doi.org/10.36805/bit-cs.v5i1.6073Keywords:
Graduation, Prediction, Data Mining, C4.5, Naïve BayesAbstract
Thel prolcelss olf molnitolring and elvaluating thel graduatioln olf Muhammadiyah Pringselwu Univelrsity (UMPRI) studelnts relally nelelds tol bel dolnel belcausel thel studelnt graduatioln ratel is an ellelmelnt olf accrelditatioln asselssmelnt that is velry impolrtant folr elach Study Prolgram. Data Mining can bel useld tol classify studelnt graduatioln accuracy. This study aims tol apply thel olrangel data mining applicatioln using thel K-Nelarelst Nelighbolr (K-NN), Delcisioln Trelel and Naivel Bayels moldells and will theln elvaluatel thel accuracy olf elach olf thelsel moldells. This relselarch was colnducteld at Pringselwu Muhammadiyah Univelrsity in selvelral batchels, theln studelnt data will bel analyzeld using thel olrangel data mining applicatioln using thel K-NN, Delcisioln Trelel and Naivel Bayels moldells. Thel data telsting prolcelss appliels K-Folld Crolss Validatioln (K=5), whilel thel elvaluatioln moldell useld is thel Colnfusioln Matrix and ROlC. Thel relsults olf thel colmparisoln olf thel threlel moldells arel as folllolws, K-NN has an accuracy ratel olf 75.7%, Delcisioln Trelel has an accuracy ratel olf 78.1%, and Naivel Bayels has an accuracy ratel olf 77.8%. Thelrelfolrel, folr classifying thel graduatioln ratel olf Muhammadiyah Univelrsity studelnts, Pringselwu relcolmmelnds thel Delcisioln Trelel moldell belcausel it has a belttelr lelvell olf accuracy than K-NN and Naivel Bayels.
Downloads
References
Alim, S. (2021a). Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa
Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes Orange Data Mining
Implementation For Student Graduation Classification Using K-Nearest Neighbor, Decision Tree
And Naive Bayes Models. In Jurnal Ilmiah Nero (Vol. 6, Issue 2).
Amra, I. A. A., & Maghari, A. Y. A. (2017). Students performance prediction using KNN and
Naïve Bayesian. ICIT 2017 - 8th International Conference on Information Technology,
Proceedings, 909–913. doi: 10.1109/ICITECH.2017.8079967
Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naïve Bayes. In Agustus
(Vol. 10, Issue 2).
Berrar, D. (2019). Bayes’ Theorem and Naive Bayes Classifier. In S. Ranganathan, M. Gribskov,
K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology
(pp. 403–412). Oxford: Academic Press. doi: https://doi.org/10.1016/B978-0-12-8096338.20473-1
Caelen, O. (2017). A Bayesian Interpretation of the Confusion Matrix.
Eko Prasetiyo Rohmawan. (2018). Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan
Metode Desicion Tree Dan Artificial Neural Networ.
Forsyth, D. (2018). Probability and Statistics for Computer Science.
Hafizan, H., & Putri, A. N. (2020). Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi
Balita Di Kabupaten Simalungun (Vol. 1, Issue 2).
Kartini, D., Nugroho, R. A., & Faisal, M. R. (2017). Klasifikasi Kelulusan Mahasiswa
Menggunakan Algoritma Learning Vector Quantization. In Jurnal Positif (Vol. 3, Issue 2).
Mikut, R., & Reischl, M. (2011). Data mining tools. WIREs Data Mining and Knowledge
Discovery, 1(5), 431–443. doi: https://doi.org/10.1002/widm.24
Parteek Bhatia. (2019). Data Mining and Data Warehousing.
Sari Dewi. (2016). Komparasi 5 Metode Algoritma Klasifikasi Data Mining Pada Prediksi
Keberhasilan Pemasaran Produk Layanan Perbankan.
Seref, B., & Bostanci, E. (2018). Sentiment Analysis using Naive Bayes and Complement Naive
Bayes Classifier Algorithms on Hadoop Framework. 2018 2nd International Symposium on
Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–7. doi:
1109/ISMSIT.2018.8567243
Wati, E. F., & Rudianto, B. (2022). Universitas Bina Sarana Informatika 1 Teknik Informatika,
Universitas Nusa Mandiri ,2 Jl. Kramat Raya No.98, Senen, Jakarta Pusat 10450 1 Jl. In Raya
Jatiwaringin (Vol. 11, Issue 2). Teknik Dan Informatika.
Wojtek J. Krzanowski, D. J. H. (2009). ROC Curves for Continuous Data.
Kartini, K., Sujanto, B., & Mukhtar, M. (2017). The influence of organizational climate,
transformational leadership, and work motivation on teacher job performance. IJHCM
(International Journal of Human Capital Management), 1(01), 192-205.
Galit Shmueli, P. C. B. I. Y. N. R. P. K. C. L. Jr. (2018). Data Mining For Business Analytics.

Downloads
Published
Issue
Section
License
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.