Arabica Coffee Sales Forecasting Using ARIMA Neural Network (Case Study: KOTEM Bondowoso)

Author's Country: Indonesia

Authors

  • Muhammad Ariful Furqon Universitas Jember image/svg+xml
  • Saudi Efendi Universitas Jember
  • Yanuar Nurdiansyah Universitas Jember

DOI:

https://doi.org/10.36805/5a61hr55

Keywords:

Arima, Coffee sales, Forecasting, Neural Network, MAPE

Abstract

Kopi Tembakau (KOTEM) Bondowoso is a local coffee producer specializing in Arabica ground coffee, sourced directly from nearby farmer cooperatives. A major hurdle they face is accurately forecasting sales, a critical factor for optimizing production and inventory. To tackle this, a hybrid forecasting model blending ARIMA (for linear/seasonal trends) and Neural Networks (for non-linear patterns) was developed. The study analyzed KOTEM’s sales data from September 2019 to August 2022, preprocessed to address non-stationarity via differencing and normalization. Results revealed the hybrid model outperformed standalone ARIMA, achieving a 1.0% MAPE (vs. ARIMA’s 1.3%). It also better captured sales volatility and seasonal shifts, offering more dependable forecasts. ARIMA-NN could significantly enhance KOTEM production scheduling and stock management.

Downloads

Download data is not yet available.

References

[1] E. O. Eboigbe, O. A. Farayola, F. O. Olatoye, O. C. Nnabugwu, and C. Daraojimba, “Business intelligence transformation through AI and data analytics,” Engineering Science & Technology Journal, vol. 4, no. 5, pp. 285–307, 2023.

[2] D. Apriani,; Feny, M.; Alghifari, and M. Igamo, “Indonesian Coffee at The International Market,” Jurnal Paradigma Ekonomika, vol. 17, no. 2, pp. 261–272, Sep. 2022, doi: 10.22437/jpe.v17i2.13983.

[3] R. Naqvi, A. Mehdi, and A. Zehra, “Coffee as a Functional Drink: Coffee-drinking and health benefits that support the concept of coffee as a functional food,” Prog Nucl Energy 6 Biol Sci, vol. 3, no. 4, pp. 516–524, Dec. 2023, doi: 10.55006/BIOLSCIENCES.2023.3405.

[4] L. Barrea et al., “Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists,” Crit Rev Food Sci Nutr, vol. 63, no. 9, pp. 1238–1261, 2023, doi: 10.1080/10408398.2021.1963207.

[5] Perhutani, “Khofifah: Bondowoso penghasil kopi terbesar di Jatim.” Accessed: Apr. 29, 2025. [Online]. Available: https://www.perhutani.co.id/khofifah-bondowoso-penghasil-kopi-terbesar-di-jatim/

[6] G. S. Day, “Aligning the Organization with the Market,” MIT Sloan Manag Rev, Oct. 2006, Accessed: Apr. 29, 2025. [Online].

[7] R. Sesario, T. Duha, A. Alfiah, S. A. Pramono, P. A. Cakranegara, and P. N. Pontianak, “SINGLE EXPONENTIAL SMOOTHING IN FORECASTING TOOLS AND MEDICINE STOCKS,” INFOKUM, vol. 10, no. 4, pp. 27–32, Oct. 2022, Accessed: Jan. 05, 2024. [Online].

[8] A. S. Pranata, N. O. Adiwijaya, and M. Furqon, “Screen Printing T-shirt Stock Forecasting System with Weight Moving Average,” Jurnal Komputer Terapan, vol. 9, no. 1, pp. 50–57, Jun. 2023, doi: 10.35143/jkt.v9i1.5834.

[9] V. Komaria, N. El Maidah, and M. A. Furqon, “Prediksi Harga Cabai Rawit di Provinsi Jawa Timur Menggunakan Metode Fuzzy Time Series Model Lee,” Komputika : Jurnal Sistem Komputer, vol. 12, no. 2, pp. 37–47, Sep. 2023, doi: 10.34010/KOMPUTIKA.V12I2.10644.

[10] M. Furqon, E. R. Fahlefi, and N. O. Adiwijaya, “Drug Sales Forecasting Using Single Exponential Smoothing (Case Study: NDM Pharmacy),” in 2nd International Conference on Neural Networks and Machine Learning 2023 (ICNNML 2023), 2024, pp. 25–31.

[11] R. Hidayat and B. H. Mustawinar, “peramalan jumlah wisatawan asing dengan model arima,” Infinity: Jurnal Matematika dan Aplikasinya, vol. 2, no. 2, pp. 104–115, Mar. 2022, doi: 10.30605/27458326-100.

[12] M. Khashei and M. Bijari, “A novel hybridization of artificial neural networks and ARIMA models for time series forecasting,” Appl Soft Comput, vol. 11, no. 2, pp. 2664–2675, Mar. 2011, doi: 10.1016/J.ASOC.2010.10.015.

[13] G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time series,” Eur J Oper Res, vol. 160, no. 2, pp. 501–514, Jan. 2005, doi: 10.1016/J.EJOR.2003.08.037.

[14] V. Gudivada, A. Apon, and J. Ding, “Data quality considerations for big data and machine learning: Going beyond data cleaning and transformations,” International Journal on Advances in Software, vol. 10, no. 1, pp. 1–20, 2017.

[15] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control. John Wiley & Sons, 2015.

[16] M. Estrada et al., “Evaluation of several error measures applied to the sales forecast system of chemicals supply enterprises,” International Journal of Business Administration, vol. 11, no. 4, pp. 39–51, 2020.

[17] A. C. Atkinson, M. Riani, and A. Corbellini, “The box–cox transformation: Review and extensions,” 2021.

[18] S. Yadav and K. P. Sharma, “Statistical Analysis and Forecasting Models for Stock Market,” ICSCCC 2018 - 1st International Conference on Secure Cyber Computing and Communications, pp. 117–121, Jul. 2018, doi: 10.1109/ICSCCC.2018.8703324.

[19] Z. Hossain, A. Rahman, M. Hossain, and J. H. Karami, “Over-Differencing and Forecasting with Non-Stationary Time Series Data,” Dhaka University Journal of Science, vol. 67, no. 1, pp. 21–26, Jan. 2019, doi: 10.3329/DUJS.V67I1.54568.

[20] A. A. Alsuwaylimi, “Comparison of ARIMA, ANN and Hybrid ARIMA-ANN models for time series forecasting,” Information Sciences Letters, vol. 12, no. 2, pp. 1003–1016, 2023.

Downloads

Published

2026-01-30

How to Cite

[1]
“Arabica Coffee Sales Forecasting Using ARIMA Neural Network (Case Study: KOTEM Bondowoso): Author’s Country: Indonesia”, bit-cs, vol. 7, no. 1, pp. 42–49, Jan. 2026, doi: 10.36805/5a61hr55.