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Abstract  

Reinforcement learning (RL) approaches, particularly Q-learning, have emerged as strong tools for 

autonomous agent training, allowing agents to acquire optimum decision-making rules through 

interaction with their surroundings. This research investigates the use of Q-learning in the context of 

training autonomous agents for robotic soccer, a complex and dynamic arena that necessitates strategic 

planning, coordination, and adaptation. We studied the learning progress and performance of agents 

taught using Q-learning in a series of experiments carried out in a simulated soccer setting. During 

training, agents interacted with the soccer environment, iteratively changing their Q-values in response 

to observable rewards and behaviors. Despite the high-dimensional and stochastic character of the 

soccer domain, Q-learning helped the agents develop excellent tactics and decision-making 

capabilities. Notably, our study found that, on average, the agents required 64 steps to reach a stable 

policy with an average reward of -1. 
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I. Introduction  

Reinforcement learning (RL) approaches are increasingly being used to teach autonomous entities 

to complete hard tasks in the fields of artificial intelligence and robotics. One such exciting application 

is robotic soccer, in which teams of autonomous agents work to achieve predetermined goals, 

mimicking the dynamics of real-world soccer matches. This study focuses on the creation and analysis 

of RL-based robotic soccer agents, specifically their capacity to acquire effective tactics for gaming, 

decision-making, and coordination in a dynamic and competitive setting. This conclusion shows that 

the agents successfully balanced exploration and exploitation, progressively learning to maximize 

cumulative rewards while avoiding penalties. Furthermore, the observed average reward of -1 implies 

that, on average, the agents had unsatisfactory results during their learning process, emphasizing the 

difficulties associated with understanding the complexity of robotic soccer. 

 
Figure 1. Reinforcement Learning Powered Robot Involved in Soccer 
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Soccer players must be able to study and develop basic abilities in order to gain a comprehensive 

and advanced grasp of the game. These abilities can eventually be combined and utilized to mimic the 

knowledge of seasoned players. This work explains the application of reinforcement learning, a machine 

learning approach, to learn the fundamental abilities of intercepting a moving ball. The results of 

simulation runs on the Robocup Soccer server were also presented (A. Sarje et al, 2004). At the Centro 

Universitário da FEI, writers were working on a project to compete in the Robocup Simulation league, 

which aimed to test Reinforcement Learning methods in a Multiagent domain. The article outlines the 

squad formed for the Robot Soccer Simulation tournament. They conclude that Reinforcement Learning 

techniques are effective in this arena (Celiberto et al, 2005). The benefit of RL is the incorporation of a 

reward system when selecting an action that translates a video frame from a soccer match to one of 

three potential states. Unlike competing techniques, we designed the RL model such that participants' 

team labels do not need to be explicitly identified. We use a deep recurrent Q-network (DRQN) to 

discover the best policy. For effective DRQN training, we presented decorrelated experience replay 

(DER), a technique that picks essential events based on the correlations of the experiences recorded in 

replay memory. Experimental findings reveal that computing pass and possession statistics is at least 

5.75% and 2.1% more accurate than using similar methodologies (S. Sarkar et al, 2023).  

Robots are allocated roles based on the scenario on the gaming field. Each job has distinct 

behaviors and duties. The RL assists the Helper and Defender in improving their policy choosing 

abilities during real-time confrontations. The RL system may learn not just how Helper assists its 

colleagues in forming an assault or defense type, but also how to maintain a suitable defensive approach. 

Some trials on the FIRE simulator and standard platform have shown that the suggested strategy 

outperforms its rivals (Hu C et al, 2020). This study introduces a unique multiagent reinforcement 

learning (MARL) algorithm, Nash-learning with regret matching, which uses regret matching to 

accelerate the well-known MARL algorithm Nash-learning. It is vital to adopt an appropriate method 

for action selection in order to balance the relationship between exploration and exploitation and 

improve the ability of online learning for Nash-learning. In a Markov Game, the combined action of 

agents using the regret matching method can converge to a set of no-regret points that can be considered 

as coarse correlated equilibrium, which contains Nash equilibrium in essence (Y. Ma et al, 2009). 

In comparison to the literature, our research methodology emphasizes a detailed implementation 

of RL algorithms, particularly in the action selection process. We explicitly outline how actions are 

chosen based on the current state and exploration strategy, enhancing transparency and reproducibility 

in algorithmic implementation. This level of clarity ensures consistency and facilitates future research 

efforts in the field (Y. Ma et al, 2009). Our methodology advances the previous methods with a simpler 

concept comprising up of a soccer field that was designed with specified dimensions, goals, and 

boundary conditions to mimic the dynamics of a real soccer game. We employed RL algorithms, namely 

Q-learning, to train autonomous agents to investigate their environment, make strategic decisions, and 

interact with other agents and the ball. The agents' activities were dictated by the game's current state, 

with rewards and punishments given in line with established rules and objectives. Training iterations 

were utilized to iteratively alter the agents' rules, resulting in improved performance over time. 

Furthermore, our methodology is consistent with previous research in robotic soccer, leveraging 

simulation-based methodologies and reinforcement learning (RL) algorithms, notably Q-learning, to 

train autonomous agents. Similar to earlier research, we used the Pygame package to create a virtual 

soccer environment, modeling the field with specified dimensions, goals, and boundary conditions to 

mimic realistic gameplay dynamics. The agents' actions were dictated by the game's present state, with 

rewards and punishments provided in accordance with established rules and goals. Our technique 

included creating a Q-table to hold Q-values for state-action pairings, specifying learning parameters 

including the learning rate (α), discount factor (γ), and exploration rate (ε), and updating Q-values with 

the Q-learning update equation. 

 

II. Methods 

To carry out this research, we used a simulation-based technique and the Pygame package to 

develop a virtual soccer environment (F. Michaud et al, 1998). The soccer field was modeled with 

specific dimensions, goals, and boundary conditions to simulate the dynamics of a genuine soccer game. 
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We used RL algorithms, especially Q-learning, to teach autonomous agents to explore their 

surroundings, make strategic decisions, and interact with other agents and the ball (M. Asada, E et al, 

1999). The agents' behaviors were dependent on the game's current condition, with rewards and 

punishments provided in accordance with predetermined rules and objectives. Training iterations were 

used to iteratively adjust the agents' rules and enhance their performance over time.  

This work uses reinforcement learning (RL) techniques, notably Q-learning, to train autonomous 

agents for robotic soccer games. The simulation system is built on the Pygame package, which provides 

a flexible framework for developing and visualizing soccer situations. 

1. Action 

An action made in reaction to the existing situation. In this context, the action might imply whether 

the left paddle travels up, down, or remains still. The action value is usually expressed as an integer. 

For example, an action of 0 may correlate to moving the paddle up, 1 to maintaining it stationary, 

and 2 to pushing it down. 

2. Reward  

The reward gained after doing the stated action in the current state. In reinforcement learning, 

incentives are utilized to communicate the desirableness of a certain state-action combination. A 

positive reward often denotes a favorable outcome, whereas a negative reward suggests a bad 

outcome. 

3.  New State 

The new state is the consequence of doing the given action in the current state. It represents the 

status of the environment after the activity has been carried out. The new state is usually decided 

by the game dynamics and the impact of the action on the surroundings. 

4. Q-learning 

Q-learning is a model-free reinforcement learning method that determines the best action-selection 

strategy for a given finite Markov decision process (MDP). It learns the importance of doing a 

certain action in a given condition and strives to maximize the overall reward over time. Q-learning 

is a type of temporal difference learning in which the agent learns from differences between 

successive estimations of the value function.   

 

The equation for Q-learning is given by: 

 

𝑸(𝒔, 𝒂) ← 𝑸(𝒔, 𝒂) + 𝜶[𝒓 + 𝜸𝑚𝑎𝑥𝒂𝑸(𝒔′, 𝒂) − 𝑸(𝒔, 𝒂)]                  (1). 
Where: 

a) Q(s,a) is the estimated value (Q-value) of taking action a in state s. 

b) α (alpha) is the learning rate, controlling how much the Q-values are updated after each 

iteration. 

c) r is the immediate reward received after taking action a in state s. 

d) γ (gamma) is the discount factor, representing the importance of future rewards. It 

determines the balance between immediate and future rewards. 

e) ′s′ is the next state reached after taking action a in state s. 

 

Reward: A positive reward is given to the agent when it performs an activity that brings it closer 

to accomplishing its goal. In the context of a game, this might refer to effectively striking the ball 

with the paddle, earning points, or stopping the opponent from scoring. Positive incentives 

motivate the agent to carry out similar acts in the future. 

 

Total Reward: Sum up all the rewards obtained by the agent. 

Average Reward per Step:  

 

𝐓𝒐𝒕𝒂𝒍 𝒓𝒆𝒘𝒂𝒓𝒅 / 𝒕𝒉𝒆 𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒕𝒆𝒑𝒔                                   (2). 
here, 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑒𝑝𝑠 𝑇𝑎𝑘𝑒𝑛 =   𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠. 

 

Punishment: A punishment, also known as a penalty or negative reward, is provided to the agent 

when it engages in an activity that pushes it away from its purpose or results in unwanted outcomes. 
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In the context of a game, this might include missing the ball, allowing the opponent to score, or 

making ineffective plays. Punishments dissuade the agent from engaging in similar behavior in the 

future. 

The simulated soccer pitch has predetermined dimensions (600x400 pixels) and includes two 

paddles representing players, a ball, and boundary lines. The location of each paddle is controlled 

by a matching agent, while the ball travels dynamically across the surroundings. 

5. Q-Table Initialization 

The Q-table stores learnt Q-values, which reflect projected future rewards for each state-action 

pair. Initially, the Q-table is filled with random values representing all conceivable state-action 

combinations. The locations of the ball and paddles establish states, whereas actions represent the 

agents' possible movement possibilities. The training procedure is a continuous game loop in which 

agents decide actions depending on their current state and learnt Q-values. At each iteration, the 

agent observes the current state, consults the Q-table to decide the appropriate action, and then 

performs the selected action to update the game state. 

The update_game_state method controls the game's dynamics, such as paddle and ball movement, 

collision detection, scoring, and resetting when the ball goes out of bounds. This function 

guarantees that the game proceeds realistically and that the agents receive feedback in the form of 

incentives depending on their activities.  

6. Q-Value Update 

The Q-learning algorithm updates the Q-values in the table after each action. The update equation 

takes into account the observed reward, the highest projected future reward for the next state, as 

well as the learning rate and discount factor factors. This iterative method allows the agents to 

learn from experience and eventually improve their decision-making policies. 

7. Parameter Tuning and Analysis 

The performance of RL-based agents is assessed using metrics such as convergence speed, average 

reward, and gaming efficacy. To enhance learning, characteristics such as the learning rate and 

discount factor are routinely modified and assessed. Furthermore, the effects of exploration-

exploitation techniques on learning efficiency are investigated. 

 

Algorithm:  

a. Initialize Environment: Set up the simulated soccer environment using a suitable library (e.g., 

Pygame) with defined dimensions, player paddles, ball, and boundary lines. 

b. Initialize Q-Table: Create a Q-table to store Q-values for all state-action pairs. Initialize the 

Q-table with random values representing the expected future rewards. 

c. Define Learning Parameters:  

1) Set parameters such as the learning rate (α), discount factor (γ), and exploration rate (ε) 

for the Q-learning algorithm. 

2) Update the Q-values in the Q-table using the Q-learning update equation, incorporating 

the observed reward and the maximum expected future reward. 

3) Check Termination: Check if the game has ended (e.g., ball out of bounds). If so, reset 

the game to the initial state. 

d. Game Loop: 

1) Start Game: Begin the game loop to iterate over each time step. 

2) Observation: Obtain the current state of the game, including the positions of the ball and 

paddles. 

3) Action Selection: Based on the current state and exploration strategy (e.g., ε-greedy), 

select an action using the Q-values from the Q-table. 

4) Execute Action: Move the paddle(s) according to the selected action and update the game 

state. 

5) Reward Calculation: Determine the immediate reward based on the action taken and the 

resulting state of the game. 

8. Update Q-Values 

a. Performance Evaluation: 

1) Monitor convergence: Track the convergence of Q-values over iterations. 

2) Evaluate average reward: Calculate the average reward obtained per episode or time step. 
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3) Analyze learning progress: Assess the effectiveness of the learning algorithm in 

improving gameplay performance. 

b. Parameter Tuning and Analysis: 

Conduct experiments to tune the learning parameters (e.g., α, γ, ε) for optimal performance. 

Analyze the impact of parameter variations on learning speed, convergence, and overall 

gameplay effectiveness. 

c. Iterative Training: 

1) Repeat the game loop for multiple episodes or iterations to allow the agents to learn and 

refine their strategies over time. 

2) Continue training until the agents achieve satisfactory performance or convergence. 

d. Results and Analysis: 

1) Evaluate the performance of the RL-based agents based on predefined metrics such as 

goal scoring rate, defensive efficiency, and overall match outcome. 

2) Analyze the learned strategies, decision-making processes, and emergent behaviors 

exhibited by the agents. 

 

Table 1. Learning Parameters 

Parameter Description Value(s) 

Learning Rate (α) Rate of Q-value updates 0.1 

Discount Factor (γ) Weight assigned to future rewards 0.9 

Exploration Rate Probability of selecting random actions (ε-greedy) 0.1 

 

III. Results and Discussions 

A successful soccer simulation using agents was prepared finally and the reward and other 

parameters were observed consistently by the authors. This was a kind of successful implementation of 

rewarding system for the agents and to make them applied with the Q-learning method for soccer 

simulation.   

 

 
Figure 2. Gaming Screen 

 

In this work, we looked at the performance of RL-based robotic soccer agents trained with the Q-

learning algorithm in a simulated environment. The agents' gaming competence and strategic decision-

making improved significantly during repeated training episodes. The convergence study found that the 

agents required an average of 64 steps to reach a stable policy with an average reward of -1. This 

suggests that the agents were successful in developing effective tactics while balancing exploration and 

exploitation. Furthermore, the agents demonstrated adaptive behaviours and trained to maximise 

cumulative rewards while minimising penalties, demonstrating the effectiveness of Q-learning in 

enabling learning in dynamic and competitive situations. 
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Figure 3. Model Metrices 

 

 
Figure 4. Obtained Results 

 

The plot above depicts three metrics for a reinforcement learning model: total reward, number of 

steps, and average reward per step. The number of steps taken and total reward appear to be growing 

simultaneously, whereas the average payout per step fluctuates but remains mainly flat. Here are a few 

explanations of these findings: 

1. The model is still learning. When a model is in the early phases of training, the number of steps 

taken is likely to rise as it explores its surroundings and learns new things. At the same time, the 

overall reward may rise as the model learns new lucrative activities. The average reward per step 

may fluctuate as the model makes both excellent and bad judgments, although it is unlikely to 

change significantly if the model is still exploring extensively. 

2. The task is challenging: If the task is difficult or complicated, the model may need to go through 

several phases to obtain a satisfactory reward. In this situation, both the number of steps done and 

the overall reward may steadily grow over time as the model's performance increases.  

3. The reward function is not pretty well defined and not good enough. If the reward function is not 

well stated, the model may be unable to learn which activities are actually rewarding. In this 

situation, the model may go through several stages without making much progress, and the overall 

reward and average reward per step may not grow considerably. 

State: The given game log depicts a series of states, actions, awards, and new states experienced 

during gameplay. Let us break down the significance of each component. Each state in the log 

corresponds to the current setting of the gaming environment. It often includes information such as the 

ball's location, paddle positions, and ball direction. For example, the state (15, 20, 15, 1, -1) might mean 

that the ball is at position (15, 20), the left paddle is at position 15, the right paddle is at position 15, 

and the ball is traveling in the positive x-direction (-1) and negative y-direction (-1). 

 

 
 

Figure 5. Game Log 
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We can track how the two players' scores change by studying the game log. When the score for the 

model's side rises, it indicates that the model is being rewarded for effective behaviors. Conversely, as 

the opponent's score rises, it indicates that the model is being penalized for failing to prevent the 

opponent from scoring. As a result, by examining the score changes in the log, we can determine when 

the model is being awarded or punished based on its performance in the game. 

While our technique is comparable to previous studies, it adds new insights by providing a full and 

detailed explanation of implementation procedures and action decision processes. Our study improves 

comprehension and boosts repeatability of robotic soccer and RL approaches by giving comprehensive 

explanations and rigorous assessment measures [6]. Using simulation-based methodologies and the 

Pygame package, we were able to replicate comparable frameworks used in previous studies [1-4]. 

These research have shown the effectiveness of RL algorithms, particularly Q-learning, in training 

autonomous agents to navigate dynamic surroundings, make strategic decisions, and interact 

successfully with other agents and the ball.In summary, our comparative study emphasizes the 

compatibility of our research methods with current literature, as well as the original additions and 

advancements presented in our approach. By expanding on known frameworks and addressing critical 

implementation issues, our study enhances the state-of-the-art in robotic soccer research and underlines 

the efficacy of RL approaches in autonomous agent training. 

 

IV. Conclusions 

To sum up, the game log provides a thorough record of an agent's interactions with its 

surroundings throughout gaming. The sequence of states, actions, rewards, and new states 

provides vital insights into the game's dynamics and the implications of various agent actions. 

Analyzing this log can give valuable information for understanding how the game works, such 

as the movement of game elements like the ball and paddles, the influence of player actions on 

the game state, and the resultant rewards or punishments. 

Such insights are useful in building and improving reinforcement learning algorithms for 

training agents to perform effectively in games. Reinforcement learning agents can adjust their 

methods over time by learning from previous experiences logged in the game log, resulting in 

improved performance and greater points. Overall, the game log is an invaluable resource for 

researching game dynamics, developing efficient reinforcement learning algorithms, and, 

eventually, improving AI agents' capacities to handle complicated tasks and settings. 
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