Analysis of the Influence of Transmission System and Vehicle Weight on the Range Efficiency of the Mandalika Desantara Prototype

Authors

  • Rangga Bima Bima Universitas Mataram ,
  • , Universitas Mataram
  • , Universitas Mataram

DOI:

https://doi.org/10.36805/jtmmx.v6i1.10276

Keywords:

Electric vehicles load, Energy consumption, Transmission systems, Vehicle weight

Abstract

The development of electric vehicles (EVs) plays a vital role in reducing carbon emissions and decreasing dependence on fossil fuels. This study examines the range efficiency of the Mandalika Desantara electric prototype by investigating the impact of vehicle weight and transmission configuration on energy consumption. Experimental tests were conducted using three different vehicle weights (120.5, 130.5, and 140.5 kg) and multiple transmission ratios. The results indicate a positive correlation between vehicle weight, energy usage, and travel performance. The lowest energy consumption was recorded at 21.33 Wh for the 120.5 kg configuration, achieved at an average speed of 14.42 km/h. The highest was 46 Wh for the 140.5 kg configuration, attained at 20.00 km/h. Motor power output ranged from 113.01 W to 177.22 W, with a range efficiency varying between 0.052 km/W and 0.113 km/W. Travel times ranged from 548 seconds at a transmission ratio of 6.43 to 822 seconds at a ratio of 10.29. These findings underscore the importance of optimized weight management and transmission selection in enhancing EV performance, thereby contributing to the development of more energy-efficient and sustainable electric mobility solutions.

References

H. Xu, M. Yang, Z. Cheng, and X. Su, "An Analysis of and Improvements in the Gear Conditions of the Automated Mechanical Transmission of a Battery Electric Vehicle Considering Energy Consumption and Power Performance," Actuators, vol. 13, no. 11, (2024). doi: https://doi.org/10.3390/act13110432

S. Lacock, A. A. du Plessis, and M. J. Booysen, "Electric Vehicle Drivetrain Efficiency and the Multi-Speed Transmission Question," World Electric Vehicle Journal, vol. 14, no. 12, (2023). doi: https://doi.org/10.3390/wevj14120342

L. Wang and X. Wang, "Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay," Energy Engineering, vol. 121, no. 12, pp. 3953-3979, (2024). doi: https://doi.org/10.32604/ee.2024.056705

J. Mamala, M. Graba, J. Mitrovic, K. Prażnowski, and P. Stasiak, "Analysis of speed limit and energy consumption in electric vehicles," Combustion Engines, (2023). doi: https://doi.org/10.19206/CE-169370

F. M. Ali and N. H. Abbas, "Energy Management Strategy for Hybrid Electric Vehicles Based on Adaptive Equivalent Ratio-Model Predictive Control," Electricity, vol. 5, no. 4, pp. 972-990, (2024). doi: https://doi.org/10.3390/electricity5040049

Y. Wang, E. Lü, H. Lu, N. Zhang, and X. Zhou, "Comprehensive design and optimization of an electric vehicle powertrain equipped with a two-speed dual-clutch transmission," Advances in Mechanical Engineering, vol. 9, no. 1, (2017). doi: https://doi.org/10.1177/1687814016683144

J. Muñoz Tabora, M. E. de Lima Tostes, E. Ortiz de Matos, T. Mota Soares, and U. H. Bezerra, "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, vol. 13, no. 13, (2020). doi: https://doi.org/10.3390/en13133333

X. Xu, J. Liang, Q. Hao, P. Dong, S. Wang, W. Guo, Y. Liu, Z. Lu, J. Geng, and B. Yan, "A Novel Electric Dual Motor Transmission for Heavy Commercial Vehicles," Automotive Innovation, vol. 4, no. 1, pp. 34-43, (2021). doi: https://doi.org/10.1007/s42154-020-00129-7

T. A. Pambudi, G. E. Pramono, and D. Yuliaji, "ANALISA SISTEM RODA GIGI DIFERENSIAL PENGGERAK RODA BELAKANG KENDARAAN MOBIL LISTRIK (IKSA)," ALMIKANIKA, vol. 1, no. 1, (2019). doi: https://doi.org/10.32832/almikanika.v1i1.2009

M. A. Izzati and N. Gusnita, "Analisis Performa dan Daya Konsumsi Brushless Direct Current Motor 1000-Watt pada Mobil Listrik Hykorasaki," Briliant: Jurnal Riset dan Konseptual, vol. 7, no. 4, pp. 1111-1115, (2022). doi: https://doi.org/10.28926/briliant.v7i4.1050

N. Fath, A. Rizky, A. Rakhman, S. Maulana, and S. Sujono, "Perancangan Mobil Listrik Menggunakan Motor DC Brushed 36 Volt 450 Watt," Kilat, vol. 11, no. 1, pp. 10-20, (2022). doi: https://doi.org/10.33322/kilat.v11i1.1334

M. Sapundzhiev, I. Evtimov, and R. Ivanov, "Determination of the needed power of an electric motor on the basis of acceleration time of the electric car," in IOP Conference Series: Materials Science and Engineering, 2017, vol. 252. doi: https://doi.org/10.1088/1757-899x/252/1/012063

I.-G. Jang, C.-S. Lee, and S.-H. Hwang, "Energy Optimization of Electric Vehicles by Distributing Driving Power Considering System State Changes," Energies, vol. 14, no. 3, (2021). doi: https://doi.org/10.3390/en14030594

A. A. Yaqien, M. Yamin, and C. P. Mahandari, "Sistem Manajemen Termal Baterai LiFePO4 Menggunakan Pelat Pendingin Mini Channel Untuk Aplikasi Kendaraan Listrik," JST (Jurnal Sains dan Teknologi), vol. 12, no. 3, (2024). doi: https://doi.org/10.23887/jstundiksha.v12i3.59241

M. A. Pradhana, T. Andromeda, and Y. Christyono, "PENGISI DAYA BATERAI LiFePO4 SEBAGAI SUMBER ENERGI PADA SEPEDA LISTRIK," Transient: Jurnal Ilmiah Teknik Elektro, Charger;Baterai;Constant Current;Constant Voltage. vol. 10, no. 2, pp. 70-72, 2022-06-30 (2022). doi: https://doi.org/10.14710/transient.v11i2.70-74

A. Saepuddin, L. C. Permadi, A. D. Putra, B. C. Tjiptady, and M. R. Chanda, "Analisis Perancangan Sistem Transmisi Rantai Go-Kart Listrik 2.6 HP," Journal of Mechanical and Electrical Technology, vol. 2, no. 2, pp. 80-85, (2023). doi: https://doi.org/10.33379/metrotech.v2i2.2752

C. Rențea, M. Oprean, M. Bățăuș, and G. Frățilă, "The influence of multi-speed transmissions on electric vehicles energy consumption," presented at the IOP Conference Series: Materials Science and Engineering, 2019. doi: https://doi.org/10.1088/1757-899x/564/1/012107

S. De Pinto, P. Camocardi, C. Chatzikomis, A. Sorniotti, F. Bottiglione, G. Mantriota, and P. Perlo, "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, vol. 13, no. 13, (2020). doi: https://doi.org/10.3390/en13133328

P. Spanoudakis, G. Moschopoulos, T. Stefanoulis, N. Sarantinoudis, E. Papadokokolakis, I. Ioannou, S. Piperidis, L. Doitsidis, and N. C. Tsourveloudis, "Efficient Gear Ratio Selection of a Single-Speed Drivetrain for Improved Electric Vehicle Energy Consumption," Sustainability, vol. 12, no. 21, (2020). doi: https://doi.org/10.3390/su12219254

W. J. Sweeting, A. R. Hutchinson, and S. D. Savage, "Factors affecting electric vehicle energy consumption," International Journal of Sustainable Engineering, vol. 4, no. 3, pp. 192-201, (2011). doi: https://doi.org/10.1080/19397038.2011.592956

L. C. Kien, T. D. Loi, M. P. Duong, and T. T. Nguyen, "Energy Loss Reduction for Distribution Electric Power Systems with Renewable Power Sources, Reactive Power Compensators, and Electric Vehicle Charge Stations," Sensors (Basel), vol. 25, no. 7, Mar 22 (2025). doi: https://doi.org/10.3390/s25071997

M. H. M. Mabrur, I. D. K. Okariawan, and M. I Made, "The Analysis Electric Vehicle Range Analysis Using Regression Technique: Case Study of Electric Vehicles Electric Vehicles of the University of Mataram," Jurnal Teknik Mesin Mechanical Xplore, vol. 5, no. 2, pp. 79-87, (2025). doi: https://doi.org/10.36805/jtmmx.v5i2.8861

L. POPESCU and O. CRAIU, "ENERGY CONSUMPTION ANALYSIS FOR AN EV POWERTRAIN USING THREE BRUSHLESS DC IDENTICAL MOTORS," Revue Roumaine des Sciences Techniques, Série Électrotechnique et Énergétique, vol. 68, no. 2, pp. 152–157, (2023). doi: https://doi.org/10.59277/rrst-ee.2023.68.2.6

J. J. Eckert, L. C. A. Silva, E. S. Costa, F. M. Santiciolli, F. G. Dedini, and F. C. Corrêa, "Electric vehicle drivetrain optimisation," IET Electrical Systems in Transportation, vol. 7, no. 1, pp. 32-40, (2017). doi: https://doi.org/10.1049/iet-est.2016.0022

R. Sakthivelsamy and K. Subramaniyan, "Modelling and performance analysis of free body dynamics of electric vehicles," International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 15, no. 1, (2024). doi: https://doi.org/10.11591/ijpeds.v15.i1.pp1-7

H. Chen, H. Kim, R. Erickson, and D. Maksimović, "Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters," IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 98-116, (2017). doi: https://doi.org/10.1109/tpel.2016.2533347

K. Kwon, M. Seo, and S. Min, "Multi-Objective Optimization of Powertrain Components for Electric Vehicles Using a Two-Stage Analysis Model," International Journal of Automotive Technology, vol. 21, no. 6, pp. 1495-1505, 2020/12/01 (2020). doi: https://doi.org/10.1007/s12239-020-0141-5

N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy, H. Gaulous, G. Mulder, P. Van den Bossche, T. Coosemans, and J. Van Mierlo, "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, vol. 113, pp. 1575-1585, (2014). doi: http://dx.doi.org/10.1016/j.apenergy.2013.09.003

G. Lee, J. Song, Y. Lim, and S. Park, "Energy consumption evaluation of passenger electric vehicle based on ambient temperature under Real-World driving conditions," Energy Conversion and Management, vol. 306, (2024). doi: https://doi.org/10.1016/j.enconman.2024.118289

J. Zhang, Z. Wang, P. Liu, and Z. Zhang, "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, vol. 275, (2020). doi: https://doi.org/10.1016/j.apenergy.2020.115408

J. B. Kondru and Y. P. Obulesu, "Comprehensive performance analysis of an electric vehicle using multi-mode Indian drive cycles," Sci Rep, vol. 15, no. 1, p. 17699, May 21 (2025). doi: https://doi.org/10.1038/s41598-025-02238-x

R. Bimaa and I. M. Maraa, "Pengaruh Variasi Rasio Gear dan Berat Kendaraan Terhadap Efisiensi Energi pada Kendaraan Prototipe Listrik Fakultas Teknik Universitas Mataram," ROTASI, vol. 27, no. 1, pp. 23-28, (2025). doi: http://dx.doi.org/10.14710/rotasi.27.1.23-28

Analysis of the Influence of Transmission System and Vehicle Weight on the Range Efficiency of the Mandalika Desantara Prototype

Downloads

Published

2025-07-07

How to Cite

Analysis of the Influence of Transmission System and Vehicle Weight on the Range Efficiency of the Mandalika Desantara Prototype. (2025). Jurnal Teknik Mesin Mechanical Xplore, 6(1), 41-51. https://doi.org/10.36805/jtmmx.v6i1.10276