Performance Evaluation of Rice Husk-Based Catalytic Converters: Emission Reduction and Minimal Engine Power Loss Verified by Dynamometer Test

Penulis

  • Universitas Buana Perjuangan Karawang ,
  • Teknik Mesin Universitas Buana Perjuangan Karawang ,
  • Universitas Buana Perjuangan Karawang ,
  • Program Studi Teknik Mesin, Universitas Islam DR KHEZ Muttaqien ,
  • Program Studi Teknik Mesin, Universitas Buana Perjuangan Karawang ,
  • Program Studi Teknik Mesin, Universitas Buana Perjuangan Karawang ,

DOI:

https://doi.org/10.36805/jtmmx.v6i1.10415

Kata Kunci:

Catalytic converter, Emission reduction, Dynamometer test, Engine performance, Air–fuel ratio

Abstrak

Catalytic converters (CCs) play a critical role in reducing exhaust emissions in motor vehicles. This study presents a sustainable solution by utilizing rice husk waste (RHW) to produce activated carbon, which is then fabricated into honeycomb-shaped catalytic converters with thickness variations of 10 mm, 15 mm, 20 mm, and 25 mm. Among these, the 15 mm-thick converter (CC15) exhibited the most effective emission reduction performance, achieving reductions of 78.33% in hydrocarbons (HC) and 48.23% in carbon monoxide (CO). To assess its impact on engine performance, a series of dynamometer tests were conducted, showing that the installation of CC15 led to less than a 6% decrease in both power and torque, which is considered acceptable for daily vehicle use. Furthermore, the air–fuel ratio (AFR) shifted from an average of 13.38 under standard conditions to 14.19 with CC15, indicating stable combustion. Acoustic evaluation also confirmed that the CC did not function as a noise suppressor, resulting in no significant alteration to engine acoustics. Overall, the CC15 demonstrates an effective balance between environmental performance and engine efficiency, offering a practical emission control solution based on locally sourced agricultural waste.

Referensi

D. Lin and J. Cui, “Transport and mobility needs for an ageing society from a policy perspective: Review and implications,” Int J Environ Res Public Health, vol. 18, no. 22, pp. 1–16, Nov. 2021, doi: https://doi.org/10.3390/ijerph182211802.

A. W. H. Poi, T. H. Law, H. Hamid, and F. Mohd Jakarni, “Motorcycle to car ownership: The role of road mobility, accessibility and income inequality,” Transp Res D Transp Environ, vol. 90, no. 102650, pp. 1–8, Jan. 2021, doi: https://doi.org/10.1016/j.trd.2020.102650.

G. Sharmilaa and T. Ilango, “Vehicular air pollution based on traffic density - A case study,” Mater Today Proc, vol. 52, no. 3, pp. 532–536, Oct. 2022, doi: https://doi.org/10.1016/j.matpr.2021.09.278.

M. Pechout, P. Jindra, J. Hart, and M. Vojtisek-Lom, “Regulated and unregulated emissions and exhaust flow measurement of four in-use high performance motorcycles,” Atmos Environ X, vol. 14, no. 100170, pp. 1–11, Apr. 2022, doi: https://doi.org/10.1016/j.aeaoa.2022.100170.

E. G. Sari and M. Sofwan, “Carbon Dioxide (CO2) Emissions Due to Motor Vehicle Movements in Pekanbaru City, Indonesia,” Journal of Geoscience, Engineering, Environment, and Technology, vol. 6, no. 4, pp. 234–242, Dec. 2021, doi: https://doi.org/10.25299/jgeet.2021.6.4.7692.

M. F. Irma and E. Gusmira, “Evaluasi kebijakan lingkungan terhadap emisi gas rumah kaca di Indonesia,” Jurnal Kolaborasi Sains dan Ilmu Terapan, vol. 2, no. 1, pp. 12–18, Dec. 2023, doi: https://doi.org/10.69688/juksit.v2i1.26.

S. Machmud, U. B. Surono, and T. Hasanudin, “Analisis pengaruh tahun perakitan terhadap emisi gas buang kendaraan bermotor,” Jurnal Mesin Nusantara, vol. 4, no. 1, pp. 21–29, Jul. 2021, doi: https://doi.org/10.29407/jmn.v4i1.16038.

N. R. Mubarak and J. Ratnasari, “Penerapan Peraturan Emisi pada Penurunan Emisi Gas Rumah Kaca dari Kendaraan Bermotor di Indonesia,” BACARITA Law Journal, vol. 5, no. 2, pp. 201–208, Feb. 2025, doi: https://doi.org/10.30598/bacarita.v5i2.16895.

I. Sofana, S. Sumarli, and F. I. Kusuma, “Aplikasi three way catalytic converter paduan CuZn (kuningan) pada knalpot terhadap nilai emisi CO dan NOx sepeda motor shogun 125cc,” Jurnal Teknik Motomotif: Kajian Keilmuan dan Pengajaran, vol. 2, no. 2, pp. 57–60, Oct. 2018, http://dx.doi.org/10.17977/um074v2i22018p57-60.

K. D. Patel, D. Subedar, and F. Patel, “Design and development of automotive catalytic converter using non-nobel catalyst for the reduction of exhaust emission: A review,” Mater Today Proc, vol. 57, pp. 2465–2472, Jan. 2022, doi: https://doi.org/10.1016/j.matpr.2022.03.350.

W. Warju, S. R. Ariyanto, M. Y. Pratama, and K. R. Haratama, “Optimization of Metallic catalytic converters to reduce CO emissions and increase engine power,” Automotive Experiences, vol. 7, no. 2, pp. 299–309, Sep. 2024, doi: https://doi.org/10.31603/ae.11567.

A. Hamid et al., “An Improvement of Catalytic Converter Activity Using Copper Coated Activated Carbon Derived from Banana Peel,” International Journal of Renewable Energy Development, vol. 12, no. 1, pp. 144–154, Jan. 2023, doi: https://doi.org/10.14710/ijred.2023.48739.

S. Gunawan, H. Hasan, and R. D. W. Lubis, “Pemanfaatan adsorben dari tongkol jagung sebagai karbon aktif untuk mengurangi emisi gas buang kendaraan bermotor,” Jurnal Rekayasa Material, Manufaktur dan Energi, vol. 3, no. 1, pp. 38–47, Mar. 2020, doi: https://doi.org/10.30596/rmme.v3i1.4527.

W. Wagino et al., “Eco-friendly motorcycle technology: examining the impact of banana peel-based catalytic converters on CO emissions with biogasoline fuel,” in E3S Web of Conferences, Magelang: EDP Sciences, Mar. 2024, pp. 1-11,500(03030). doi: https://doi.org/10.1051/e3sconf/202450003030.

D. A. Fajri and A. Ghofur, “Pengaruh arang kayu ulin sebagai catalytic converter terhadap emisi gas buang dan konsumsi bahan bakar pada mesin toyota kijang 5K,” JTAM ROTARY, vol. 3, no. 2, pp. 131–44, Sep. 2021, doi: https://doi.org/10.20527/jtam_rotary.v3i2.

J. Yang, L. Fu, F. Wu, X. Chen, C. Wu, and Q. Wang, “Recent developments in activated carbon catalysts based on pore size regulation in the application of catalytic ozonation,” Catalysts, vol. 12, no. 10, pp. 1-31(1085), Oct. 2022, doi: https://doi.org/10.3390/catal12101085.

E. R. Al-Insyrah, I. Febriana, M. R. Fadhlurrahman, and Y. Bow, “Analisis Kinerja Gasifier Downdraft Bahan Baku Tempurung Kelapa dan Pelet Sekam Padi Ditinjau dari Komposisi Syngas dan Nilai Kalor,” Jurnal Penelitian Sains, vol. 27, no. 1, pp. 1–7, Mar. 2025, doi: https://doi.org/10.56064/jps.v27i1.1058.

N. T. Nguyen et al., “The extraction of lignocelluloses and silica from rice husk using a single biorefinery process and their characteristics,” Journal of Industrial and Engineering Chemistry, vol. 108, pp. 150–158, Apr. 2022, doi: https://doi.org/10.1016/j.jiec.2021.12.032.

A. Nurul Huda, I. Lestari, and S. Hidayat, “Pemanfaatan Karbon Aktif Dari Sekam Padi Sebagai Elektroda Superkapasitor,” Jurnal Ilmu dan Inovasi Fisika), vol. 06, no. 02, pp. 102–113, Jan. 2022, https://doi.org/10.24198/jiif.v6i2.39639.

A. Febriyanti, A. W. Wahab, and M. Maming, “Pemanfaatan karbon aktif sekam padi sebagai adsorben emisi gas buang pada sepeda motor,” Al-Hikmah, vol. 22, no. 2, pp. 107–117, Dec. 2020.

D. R. Lobato-Peralta, J. A. Okolie, H. O. Orugba, D. M. Arias, P. J. Sebastian, and P. U. Okoye, “Evaluating the impact of pre-carbonization on activated carbon production from animal-origin precursors for supercapacitor electrode applications,” Biomass Bioenergy, vol. 193, pp. 1-10(107574), Feb. 2025, doi: https://doi.org/10.1016/j.biombioe.2024.107574.

A. Assyifarizi, M. A. Muryani, and M. K. Rofiq, “Evaluation of the Effectiveness of Vehicle Emission Test Implementation and Its Effect on Public Behavior Patterns In the Perspective of Utilitarianism Theory,” Jurnal USM Law Review, vol. 8, no. 1, pp. 357–380, Apr. 2025, doi: http://dx.doi.org/10.26623/julr.v8i1.11800.

I. Neme, G. Gonfa, and C. Masi, “Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4,” Results in Materials, vol. 15, no. 100304, p. 8, Sep. 2022, doi: https://doi.org/10.1016/j.rinma.2022.100304.

A. Saban, J. Jasruddin, and H. Husain, “Pengaruh Konsentrasi Aktivator (NaOH dan HCl) Terhadap Karakteristik Karbon Aktif dari Tongkol Jagung,” Jurnal Sains dan Pendidikan Fisika (JSPF) Jilid, vol. 19, no. 2, pp. 2548–6373, Aug. 2023, https://doi.org/10.35580/jspf.v19i2.45044.

J. P. K. A, S. S, B. R, S. S, and M. Nadarajan, “Effective Utilization of Banana Plant Waste Materials for Catalytic Converter Filter in Kirloskar Diesel Engine,” Material Today: proceedings, vol. 24, pp. 2174–2184, 2019, [Online]. Available: www.sciencedirect.com

A. B. D. Nandiyanto, R. Ragadhita, and M. Fiandini, “Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition,” Indonesian Journal of Science and Technology, vol. 8, no. 1, pp. 113–126, Apr. 2023, doi: https://doi.org/10.17509/ijost.v8i1.53297.

X. Li et al., “Influence of Mg-promoted Ni-based Catalyst Supported on Coconut Shell Carbon for CO2 Methanation,” ChemistrySelect, vol. 4, no. 3, pp. 838–845, Jan. 2019, doi: https://doi.org/10.1002/slct.201803369.

E. M. Mistar, T. Alfatah, and M. D. Supardan, “Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 6278–6286, Apr. 2020, doi: https://doi.org/10.1016/j.jmrt.2020.03.041.

H. Tian et al., “Innovative one-step preparation of activated carbon from low-rank coals activated with oxidized pellets,” J Clean Prod, vol. 313, no. 127877, p. 1, Sep. 2021, doi: https://doi.org/10.1016/j.jclepro.2021.127877.

A. Agung, G. Suyoga Wiguna, I. Bagus, P. Mardana, and P. Artawan, “Synthesis and Characterization of Activated Carbon Prepared from Rice Husk by Physics-Chemical Activation,” Indonesian Physical Review, vol. 7, no. 2, pp. 281–290, May 2024, doi: https://doi.org/10.29303/ip.

C. A. Riyanto, E. Kurniawan, and N. R. Aminu, “Pengaruh NaOH dan Suhu Aktivasi Terhadap Karakteristik Karbon Aktif Sekam Padi Teraktivasi H3PO4,” Rafflesia Journal Of Natural And Applied Sciences, vol. 1, no. 2, pp. 59–68, Oct. 2021, doi: https://doi.org/10.33369/rjna.v1i2.16864.

Akbar Ramadhan Firman Al Abrari and Listiyono Listiyono, “Analisa Pengaruh Katalis Terhadap Gas Buang Pada Kendaraan Roda 2,” Venus: Jurnal Publikasi Rumpun Ilmu Teknik , vol. 2, no. 4, pp. 01–13, Jun. 2024, doi: https://doi.org/10.61132/venus.v2i4.375.

T. S. Blankenship, N. Balahmar, and R. Mokaya, “Oxygen-rich microporous carbons with exceptional hydrogen storage capacity,” Nat Commun, vol. 8, no. 1, Dec. 2017, doi: https://doi.org/10.1038/s41467-017-01633-x.

J. Lee, J. R. Theis, and E. A. Kyriakidou, “Vehicle emissions trapping materials: Successes, challenges, and the path forward,” Appl Catal B, vol. 243, pp. 397–414, Apr. 2019, doi: https://doi.org/10.1016/j.apcatb.2018.10.069.

A. Kurniawan, B. Sudarmanta, and D. Yuvenda, “The Influence of Air Fuel Ratio on the Performances and Emissions of a SINJAI-150 Bioethanol Fueled Engines,” The International Journal of Mechanical Engineering and Sciences, vol. 2, no. 2, p. 16, Sep. 2018, doi: https://doi.org/10.12962/j25807471.v2i2.6396.

Eco-Friendly Catalytic Converters: Synthesis, Testing, and Engine Performance Evaluation of Rice Husk Waste-Derived Activated Carbon

Diterbitkan

2025-07-07

Cara Mengutip

Performance Evaluation of Rice Husk-Based Catalytic Converters: Emission Reduction and Minimal Engine Power Loss Verified by Dynamometer Test. (2025). Jurnal Teknik Mesin Mechanical Xplore, 6(1), 29-40. https://doi.org/10.36805/jtmmx.v6i1.10415