The Heat Transfer Coefficient in a Copper Pipe Flow System Using a 40/60 Volume Ratio Ethylene Glycol/Water (EG/H2O) Blended Fluid

Penulis

  • Universitas Buana Perjuangan Karawang
  • Universitas Buana Perjuangan Karawang
  • Universitas Buana Perjuangan Karawang
  • Universitas Buana Perjuangan Karawang
  • Universitas Sebelas Maret Surakarta
  • Universitas Sebelas Maret Surakarta
  • Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.36805/jtmmx.v4i1.5570

Kata Kunci:

Friction factor, Ethaline Glycol/water, Heat transfer coefficient, Pressure drops, Reynolds number

Abstrak

This study discusses the performance of Ethaline Glycol/water (EG/H2O) fluids at a volume ratio of 40/60. EG/H2O fluids are widely used as basic fluids in cooling and heating system applications. The discussion of EG/H2O fluid performance is focused on the analysis of the heat transfer coefficient and pressure drop. The study used an experimental method using a suction test made of pure copper with an inner diameter, outer diameter and length of 16 mm, 19 mm and 1500 mm respectively. The EG/H2O volume ratio at 40/60 was selected as the input parameter. Other input parameters are variations in the fluid flow rate which are regulated using a control valve at fluid flow rates of 4, 6, 8, 10.12, 14.16 and 18 liters/minute. A 2-unit tubular heater with a total capacity of 2000 W was installed on the sides of the copper pipes. A voltage regulator with a capacity of 3000 W is used to regulate the electric power by regulating the supplied voltage. Ampere pliers are used to measure amperage at the setting used. The experimental results show that the performance of the EG/H2O fluid on the heat transfer coefficient increases as the fluid flow rate increases. The highest heat transfer coefficient rate was obtained at a fluid flow rate of 18 L/minute, while the lowest value was obtained at a fluid flow rate of 4 L/minute. Pressure drops fluctuations occur as the fluid flow rate increases. Even though there is a fluctuating pressure drop, this condition does not significantly affect the friction factor, because the fluid flow characteristics occur in a turbulent manner

Referensi

S. I. Astuti, S. P. Arso, and P. A. Wigati, “済無No Title No Title No Title,” Anal. Standar Pelayanan Minimal Pada Instal. Rawat Jalan di RSUD Kota Semarang, vol. 3, pp. 103–111, 2015.

N. Azari, I. Chhaya, Y. Ghamat, D. Kanthariya, M. Patel, and F. Bodiwala, “Experimental Investigation of Heat Transfer in Compact Heat Exchanger using Water-Ethylene Glycol,” vol. 8, no. 04, pp. 666–669, 2019.

S. Sukarman and Y. S. Gaos, “Optimasi Desain Alat Penukar Kalor Gas Buang untuk Pemanas Air Degreaser,” J. Ilm. TEKNOBIZ, vol. 8, no. 3, pp. 94–100, 2018, [Online]. Available: http://journal.univpancasila.ac.id/index.php/teknobiz/article/view/889

M. Mehrpooya, M. Dehqani, S. A. Mousavi, and S. A. Moosavian, “Heat transfer and economic analyses of using various nanofluids in shell and tube heat exchangers for the cogeneration and solar-driven organic Rankine cycle systems,” Int. J. Low-Carbon Technol., vol. 17, no. November, pp. 11–22, 2022, doi: 10.1093/ijlct/ctab075.

E. Borri et al., “Phase Change Slurries for Cooling and Storage: An Overview of Research Trends and Gaps,” Energies, vol. 15, no. 19, 2022, doi: 10.3390/en15196873.

R. LeSar and R. LeSar, “Materials selection and design,” Introd. to Comput. Mater. Sci., pp. 269–278, 2013, doi: 10.1017/cbo9781139033398.015.

H. Ibrahim, N. Sazali, A. S. M. Shah, M. S. A. Karim, F. Aziz, and W. N. W. Salleh, “A review on factors affecting heat transfer efficiency of nanofluids for application in plate heat exchanger,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 60, no. 1, pp. 144–154, 2019.

A. Ghozatloo, A. Rashidi, and M. Shariaty-Niassar, “Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 53, pp. 136–141, 2014, doi: 10.1016/j.expthermflusci.2013.11.018.

M. Bayareh, A. H. Pordanjani, A. A. Nadooshan, and K. S. Dehkordi, “Numerical study of the effects of stator boundary conditions and blade geometry on the efficiency of a scraped surface heat exchanger,” Appl. Therm. Eng., vol. 113, pp. 1426–1436, 2017, doi: 10.1016/j.applthermaleng.2016.11.166.

B. C. Pak and Y. I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide,” Exp. Heat Transf. A J. , Therm. Energy Transp. , Storage , Convers., vol. 11, no. 2, pp. 151–170, 2007, doi: http://dx.doi.org/10.1080/08916159808946559.

L. Godson, K. Deepak, C. Enoch, B. R. Jefferson Raja, and B. Raja, “Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger,” Arch. Civ. Mech. Eng., vol. 14, no. 3, pp. 489–496, 2014, doi: 10.1016/j.acme.2013.08.002.

W. H. Azmi, K. V. Sharma, P. K. Sarma, R. Mamat, S. Anuar, and V. Dharma Rao, “Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid,” Exp. Therm. Fluid Sci., vol. 51, pp. 103–111, 2013, doi: 10.1016/j.expthermflusci.2013.07.006.

W. Zheng, H. Zhang, S. You, and T. Ye, “Numerical and experimental investigation of a helical coil heat exchanger for seawater-source heat pump in cold region,” Int. J. Heat Mass Transf., vol. 96, pp. 1–10, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.01.022.

Z. Said, S. M. A. Rahman, M. El Haj Assad, and A. H. Alami, “Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid,” Sustain. Energy Technol. Assessments, vol. 31, no. December 2018, pp. 306–317, 2019, doi: 10.1016/j.seta.2018.12.020.

A. R. Akeedy, H. Alias, and S. D. Salman, “Heat transfer enhancement using passive technique: Review,” J. Teknol., vol. 83, no. 2, pp. 151–162, 2021, doi: 10.11113/jurnalteknologi.v83.14546.

L. Godson, B. Raja, D. Mohan Lal, and S. Wongwises, “Enhancement of heat transfer using nanofluids-An overview,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 629–641, 2010, doi: 10.1016/j.rser.2009.10.004.

M. Hojjat, “Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization,” Appl. Math. Comput., vol. 365, p. 124710, 2020, doi: 10.1016/j.amc.2019.124710.

M. Setiyo, S. Soeparman, N. Hamidi, and S. Wahyudi, “Caractéristiques de l’effet refroidissant d’un système frigorifique à demi-cycle sur un système au GPL,” Int. J. Refrig., vol. 82, pp. 227–237, 2017, doi: 10.1016/j.ijrefrig.2017.06.009.

I. M. Shahrul, I. M. Mahbubul, R. Saidur, S. S. Khaleduzzaman, M. F. M. Sabri, and M. M. Rahman, “Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates,” Numer. Heat Transf. Part A Appl., vol. 65, no. 7, pp. 699–713, 2014, doi: 10.1080/10407782.2013.846196.

S. P. Ahn, S. H. Kim, Y. G. Park, and M. Y. Ha, “Experimental study on drying time and energy consumption of a vented dryer,” J. Mech. Sci. Technol., vol. 33, no. 5, pp. 2471–2480, 2019, doi: 10.1007/s12206-019-0444-5.

T. U. H. S. G. Manik, G. Sudrajat, and T. B. Sitorus, “The experimental study of the coolant flow rate of an ethylene glycol-mixed water to the heat transfer rate on the radiator,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 505, no. 1, pp. 0–8. doi: 10.1088/1757-899X/505/1/012063.

A. Ghozatloo, M. Shariaty-Niasar, and A. M. Rashidi, “Investigation of Heat Transfer Coefficient of Ethylene Glycol/ Graphenenanofluid in Turbulent Flow Regime,” Int. J. Nanosci. Nanotechnol, vol. 10, no. 4, pp. 237–244, 2014.

E. M. Go, E. Shin, J. H. Cha, and S. K. Kwak, “Estimation of heat transfer coefficient of water and ethylene glycol mixture in nanopipe via non-equilibrium coarse-grained molecular dynamics,” J. Ind. Eng. Chem., vol. 77, pp. 128–134, 2019, doi: 10.1016/j.jiec.2019.04.027.

ASHRAE, ASHRAE Handbook: Fundamentals. Atlanta: ASHRAE: Atlanta, GA, USA, 2013.

N. Arora and M. Gupta, “An experimental study on heat transfer and pressure drop analysis of Al2O3/water nanofluids in a circular tube,” Mater. Today Proc., no. xxxx, pp. 2–7, 2022, doi: 10.1016/j.matpr.2022.08.347.

W. H. Azmi, K. V. Sharma, P. K. Sarma, R. Mamat, and G. Najafi, “Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube,” Int. Commun. Heat Mass Transf., vol. 59, pp. 30–38, 2014, doi: 10.1016/j.icheatmasstransfer.2014.10.007.

N. Kumar, S. S. Sonawane, and S. H. Sonawane, “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid,” Int. Commun. Heat Mass Transf., vol. 90, no. November 2017, pp. 1–10, 2018, doi: 10.1016/j.icheatmasstransfer.2017.10.001.

A. Alimoradi, M. Olfati, and M. Maghareh, Numerical investigation of heat transfer intensification in shell and helically coiled finned tube heat exchangers and design optimization, vol. 121. Elsevier B.V., 2017. doi: 10.1016/j.cep.2017.08.005.

M. R. Salem, R. K. Ali, R. Y. Sakr, and K. M. Elshazly, “Effect of γ-Al2O3/water nanofluid on heat transfer and pressure drop characteristics of shell and coil heat exchanger with different coil curvatures,” J. Therm. Sci. Eng. Appl., vol. 7, no. 4, pp. 1–9, 2015, doi: 10.1115/1.4030635.

R. Barzegarian, A. Aloueyan, and T. Yousefi, “Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation,” Int. Commun. Heat Mass Transf., vol. 86, pp. 52–59, 2017, doi: 10.1016/j.icheatmasstransfer.2017.05.021.

S. N. M. Zainon, W. H. Azmi, and A. H. Hamisa, “Thermo-physical Properties of TiO2-SiO2 Hybrid Nanofluids Dispersion with Water/Bio-glycol Mixture,” J. Phys. Conf. Ser., vol. 2000, no. 1, 2021, doi: 10.1088/1742-6596/2000/1/012003.

P. Jalili, K. Kazerani, B. Jalili, and D. D. Ganji, “Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles,” Case Stud. Therm. Eng., vol. 36, no. April, p. 102209, 2022, doi: 10.1016/j.csite.2022.102209.

M. H. Rostami, G. Najafi, B. Ghobadin, and A. Motevali, “Thermal performance investigation of SWCNT and graphene quantum dots nanofluids in a shell and tube heat exchanger by using fin blade tubes,” Heat Transf., vol. 49, no. 8, pp. 4783–4800, 2020, doi: 10.1002/htj.21852.

A. Kaleru, S. Venkatesh, and N. Kumar, “Theoretical and numerical study of a shell and tube heat exchanger using 22% cut segmental baffle,” Heat Transf., vol. 51, no. 8, pp. 7805–7821, 2022, doi: 10.1002/htj.22667.

S. N. M. Zainon and W. H. Azmi, “Heat Transfer Performance of Green Bioglycol-Based TiO2-SiO2 Nanofluids,” J. Heat Transfer, vol. 143, no. 11, pp. 1–10, 2021, doi: 10.1115/1.4051763.

A. I. Ramadhan, W. H. Azmi, R. Mamat, and K. A. Hamid, “Experimental and numerical study of heat transfer and friction factor of plain tube with hybrid nanofluids,” Case Stud. Therm. Eng., vol. 22, no. April, p. 100782, 2020, doi: 10.1016/j.csite.2020.100782.

Diterbitkan

2023-07-24

Cara Mengutip

The Heat Transfer Coefficient in a Copper Pipe Flow System Using a 40/60 Volume Ratio Ethylene Glycol/Water (EG/H2O) Blended Fluid. (2023). Jurnal Teknik Mesin Mechanical Xplore, 4(1), 37-46. https://doi.org/10.36805/jtmmx.v4i1.5570