An Energy Evaluation in a Vapor Compression Refrigeration System Utilizing R32 Refrigerant

Penulis

  • Sekolah Tinggi Teknologi Wastu Kancana
  • Sekolah Tinggi Teknologi Wastukancana
  • Sekolah Tinggi Teknologi Wastukancana
  • Universitas Pendidikan Indonesia
  • Universitas Buana Perjuangan Karawang
  • Universitas Buana Perjuangan Karawang
  • Universitas Buana Perjuangan Karawang
  • Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.36805/jtmmx.v3i2.3065

Kata Kunci:

Coefficient of performance, Evaporator, Genetron properties, VCR-system, Refrigerant R32

Abstrak

This article reports the results of a study into the efficiency of refrigeration systems. The efficiency of the refrigerant-based cooling system is a significant issue due to its connection to global warming. Vapour compression refrigeration (VCR) systems utilise the inverted Rankine cycle to provide cooling process. Existing systems are evaluated and controlled, and their efficacy is either maintained or improved. A VCR device explores evaporator load variations at five different rpm levels as test equipment for measuring the performance coefficient of R32 refrigerant. A 365-watt compressor drives the VCR system. R32 is a more eco-friendly alternative to R22 as a refrigerant. Interpolation and extrapolation were utilized and adapted to convert the system's experimental enthalpy value to total performance. Genetron was chosen to evaluate enthalpy alongside other factors, such as VCR performance. Genetron properties was used to double-check the experiment's findings. The highest CoP was found and evaluated at a speed of 400 rpm (1st level) with the result about 3.17. The lowest value for CoP was found and achieved at the maximum attainable rpm, which was 2.53. The association between CoP and fan speed is inversely proportional during evaporator loading. Genetron properties software validation results produced an average CoP value of less than 10% compared to experimental data. In addition, this work significantly contributes to the study of VCR performance through the development of test devices for the provided VCR system

Referensi

Kementerian Perdagangan RI, PERUBAHAN ATAS PERATURAN MENTERI PERDAGANGAN NOMOR 03/M-DAG/PER/1/2012 TENTANG KETENTUAN IMPOR BAHAN PERUSAK LAPISAN OZON (BPO). Indonesia, 2014.

World Meteorological Organization, “Scientific Assessment of ozone Depletion: 2018,” 2019. [Online]. Available: https://ozone.unep.org/sites/default/files/2019-05/SAP-2018-Assessment-report.pdf

NOAA NASA UNEP WMO EC, “Scientific Assessment of ozone Depletion: 2010,” 2010.

S. Sukarman, A. Abdullah, and R. H. Rahmanto, “Analisis Kinerja Mesin Pendingin Kompresi Uap Menggunakan HFC-236fa Sebagai Alternatif Pengganti R-22,” JTERA (Jurnal Teknol. Rekayasa), vol. 4, no. 1, p. 131, 2019, doi: 10.31544/jtera.v4.i1.2019.131-138.

UNEP, Decisions adopted by the nineteenth meeting of the parties to the Montreal protocol on substances that deplete the ozone layer. Nairobi, Kenya: United Nations Environment Programme (UNEP) Ozone Secretariat; 2007.

P. Sarntichartsak and S. Thepa, “Modeling and experimental study on the performance of an inverter air conditioner using R-410A with evaporatively cooled condenser,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 597–610, 2013, doi: 10.1016/j.applthermaleng.2012.08.063.

S. Jaime, O. Ignacio, C. Fernando, and Á. Estrella, “Drop-in performance of the low-GWP alternative refrigerants R452B and R454B in an R410A liquid-to-water heat pump,” Appl. Therm. Eng., vol. 182, 2021, doi: https://doi.org/10.1016/j.applthermaleng.2020.116049.

Environmental Protection Agency, Federal Register. USA: https://www.govinfo.gov/content/pkg/FR-2016-04-18/pdf/2016-08163.pdf, 2016.

ASHRAE, ASHRAE Handbook: Fundamentals. Atlanta: ASHRAE: Atlanta, GA, USA, 2013.

S. K. Wang, Handbook of Air Conditioning and Refrigeration. McGraw-Hill, 2000.

C. Aprea and A. Maiorino, “An experimental investigation of the global environmental impact of the R22 retrofit with R422D,” Energy, vol. 36, no. 2, pp. 1161–1170, 2011, doi: 10.1016/j.energy.2010.11.032.

A. A. A. A. Al-Rashed, “Effect of evaporator temperature on vapor compression refrigeration system,” Alexandria Eng. J., vol. 50, no. 4, pp. 283–290, 2011, doi: 10.1016/j.aej.2010.08.003.

D. A. Yashar, S. Lee, and P. A. Domanski, “Rooftop air-conditioning unit performance improvement using refrigerant circuitry optimization,” Appl. Therm. Eng., vol. 83, pp. 81–87, 2015, doi: 10.1016/j.applthermaleng.2015.03.012.

Y. Do et al., “An experimental study on the performance of a condensing tumbler dryer with an air-to-air heat exchanger,” Korean J. Chem. Eng., vol. 30, no. 6, pp. 1195–1200, 2013, doi: 10.1007/s11814-013-0037-4.

M. Setiyo, S. Soeparman, N. Hamidi, and S. Wahyudi, “Caractéristiques de l’effet refroidissant d’un système frigorifique à demi-cycle sur un système au GPL,” Int. J. Refrig., vol. 82, pp. 227–237, 2017, doi: 10.1016/j.ijrefrig.2017.06.009.

M. Y. Taib, A. A. Aziz, and A. B. S. Alias, “Performance Analysis Of A Domestic Refrigerator,” in 1st NCMER 2010, 26-27 May, 2010, 2010, vol. 9501, no. May, pp. 582–591. [Online]. Available: http://umpir.ump.edu.my/1593/

S. K. Wang, Air-Conditioning and Refrigeration Mechanical Engineering Handbook.

S. Sukarman, K. Khoirudin, M. Murtalim, A. Fauzi, R. Valderama, and A. Abdulah, “Analisis Kinerja Evaporator Pada Vapors Compression Refrigeration System Menggunakan Refrigerant R410a,” J. Teknol., vol. 14, no. 1, pp. 127–138, 2022.

M. Kim, W. V. Payne, P. A. Domanski, S. H. Yoon, and C. J. L. Hermes, “Performance of a residential heat pump operating in the cooling mode with single faults imposed,” Appl. Therm. Eng., vol. 29, no. 4, pp. 770–778, 2009, doi: 10.1016/j.applthermaleng.2008.04.009.

M. M. Dwinanto and S. Prajitno, “Optimization of a Dual-Evaporator Vapor Compression Refrigerator,” 2018, pp. 181–187.

Climalife, “Thermodynamic properties of R-32,” 2014.

KLEA, “Thermodynamic Property Data,” Mexichem, 2010.

S. W. F, Refrigersi dan Pengkondisian Udara. Jakarta: Erlangga, 2005.

Z. Wang, F. Zheng, and S. Xue, “The economic feasibility of the valorization of water hyacinth for bioethanol production,” Sustain., vol. 11, no. 3, 2019, doi: 10.3390/su11030905.

Y. A. Cengel and M. A. BOLES, THERMODYNAMICS: AN ENGINEERING APPROACH, 6th ed. Singapore: McGraw-Hill, 2007.

Y. A. Cengel, Introduction to Thermodinamics and Heat Treansfer, 2nd ed. McGraw-Hill, 2008.

S. Sukarman, A. D. Shieddiqie, I. B. Rahardja, A. I. Ramadhan, and Y. Handoyo, “Energy Analysis Of Vapor-Compression Refrigeration ( VCR ) System,” Int. J. Sci. Technol., vol. 8, no. 09, pp. 1285–1289, 2019.

J. R. Simões-Moreira, “A thermodynamic formulation of the psychrometer constant,” Meas. Sci. Technol., vol. 10, no. 4, pp. 302–311, 1999, doi: 10.1088/0957-0233/10/4/008.

The Engineering Mindset, How to DESIGN and ANALYSE a refrigeration system, (2017). [Online]. Available: https://www.youtube.com/watch?v=TPabv9iDENc

W. F. Stoecker, Refrigersi dan Pengkondisian Udara. Erlangga, 2005.

Diterbitkan

2022-12-26

Cara Mengutip

An Energy Evaluation in a Vapor Compression Refrigeration System Utilizing R32 Refrigerant. (2022). Jurnal Teknik Mesin Mechanical Xplore, 3(2), 67-77. https://doi.org/10.36805/jtmmx.v3i2.3065