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 The transition to electric vehicles (EVs) is a critical component of sustainable 

urban mobility strategies. While hardware components such as motors, 

batteries, and controllers are often prioritized, driver behavior also plays a 

significant role in determining overall energy efficiency. This study 

quantitatively analyzes the influence of driver behavior, vehicle load, and 

cruising speed on the energy performance of a prototype electric vehicle. 

Conducted over nine test sessions with three different drivers on a mixed-

condition track, the study reveals that energy efficiency varied significantly, 

ranging from 65.7 km/kWh to 114.3 km/kWh. Driver 3, employing smoother 

acceleration and maintaining moderate speeds (12–17.2 km/h), achieved the 

highest average efficiency (94.22 km/kWh), whereas Driver 2, with frequent 

speed fluctuations, recorded the lowest (73.98 km/kWh). These differences 

resulted in up to 30.1% variation in efficiency, solely attributable to behavioral 

factors. The findings underscore the potential of behavior-based 

interventions—such as eco-driving programs and real-time feedback 

systems—in enhancing EV performance without hardware modification. This 

research contributes to the development of behavior-aware EV systems and 

offers valuable insights for urban transport planners seeking to reduce energy 

consumption in electric mobility ecosystems. 
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1. Introduction 

The global transition toward sustainable mobility has positioned electric vehicles (EVs) as a critical 

solution for mitigating urban air pollution and reducing dependency on fossil fuels. Increasing 

transportation demand, driven by population growth and economic development, has led to an increase in 

the use of fossil-fueled vehicles, significantly contributing to greenhouse gas emissions and environmental 

degradation. As fossil fuel reserves continue to deplete, battery-powered electric vehicles (EVs) have 

emerged as a viable alternative, offering near-zero tailpipe emissions and reduced operational costs [1]. In 

Indonesia, this transition is already underway; electric car sales reached 15,437 units in 2022, an increase 

of over 380% from the previous year, demonstrating strong market growth in emerging economies [2]. 

Significant advances in EV technology, such as improvements in powertrains, battery systems, and 

regenerative braking, have enhanced performance and extended driving range. Research on electric 
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powertrain architecture and motor technology has highlighted the growing efficiency of brushed DC, 

PMSM, and BLDC motors in electric mobility platforms [3, 4]. However, the actual energy efficiency of 

EVs in operation is also influenced by external variables such as road conditions, vehicle load, and driver 

behavior [5-7]. However, real-world energy efficiency is not determined solely by the vehicle's technical 

components. A growing body of literature highlights the influence of external and operational factors, such 

as road gradient, traffic flow, climate, and—most notably—driver behavior [7-9]. 

Aggressive driving behaviors, characterized by rapid acceleration, frequent braking, and high-speed 

cruising, have consistently been shown to elevate energy consumption in EVs. Bingham et al. [8] found 

that such behaviors can increase energy use by up to 30% compared to moderate driving. Kozłowski et al. 

[9] developed mathematical models demonstrating strong correlations between acceleration, vehicle speed, 

and energy consumption, reinforcing the importance of adaptive speed control strategies. Similarly, Dong 

et al. [10] proposed an event-driven control algorithm for urban traffic that improves the EV energy 

efficiency by optimizing speed trajectories in response to real-time traffic signals. 

Urban driving scenarios further amplify this variation. Hu et al. [11] and Xing et al. [12] reported 

that individual driving styles and dynamic traffic conditions contribute to significant fluctuations in energy 

consumption during actual road tests. These findings underscore the need for behavior-aware energy 

estimation in both conventional and connected autonomous EVs. Meanwhile, studies by Alvarez et al. [13] 

and Vatanparvar and Faruque [14] have demonstrated that eco-driving strategies, such as anticipatory 

braking and gradual acceleration, combined with route planning and HVAC optimization, can significantly 

improve energy efficiency. Complementary findings by Sweeting et al. [15] reveal that energy use per 

kilometer may vary by up to 70% owing to poor driving habits or suboptimal system settings, suggesting 

that behavioral improvements can rival hardware upgrades in terms of overall efficiency. Bingham et al., 

2012 reported that that aggressive driving can increase energy consumption by approximately 30% 

compared to moderate driving styles [8]. Hu et al [16] reported that , the harmony between technological 

enhancements and improved driving behaviors promises better energy efficiency, reduced consumption, 

and extended range for electric and hybrid vehicles. 

Nonetheless, the majority of existing studies have focused on mass-produced EVs in industrialized 

regions, leaving a research gap in light-or prototype EV platforms, especially in tropical or developing 

country contexts. These prototypes frequently use alternative powertrain architectures and control logics, 

such as brushed DC motors, and operate under distinct environmental and infrastructural conditions. 

Moreover, few studies have investigated how behavioral autonomy (i.e., drivers’ unregulated style) affects 

energy performance in semi-controlled real-world circuits. To address these gaps, this study examined the 

influence of driver behavior, vehicle load, and cruising speed on the energy efficiency of a lightweight 

prototype EV equipped with a brushed DC motor. Field tests were conducted at the Pertamina Mandalika 

International Circuit, Indonesia, a semi-urban closed track with variable curves, mild gradients, and 

consistent surface friction. The drivers were given full behavioral autonomy across multiple runs, and key 

energy metrics were recorded, including energy consumption (Wh) and derived efficiency (km/kWh). This 

research aims to quantify behavioral variability in energy performance and inform the development of 

behavior-aware energy management strategies tailored to localized and developing-world settings. 

2. Methods 

2.1. Vehicle description and testing procedure  

This study employed an experimental approach to evaluate the influence of driver behavior on the 

energy efficiency of a prototype electric vehicle. The test vehicle was a lightweight three-wheeled prototype 

featuring two front wheels and one rear wheel. It is powered by a 48 V, 1000 W brushed DC motor with 

energy supplied by a LiFePO₄ battery pack, which was selected for its stability and safety under repeated 

discharge cycles [4, 17]. The vehicle was intentionally designed with a minimalist frame to reduce its weight, 
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enabling clearer measurements of energy variations under different driving conditions. This vehicle was 

designed to be as simple and light as possible for energy efficiency testing and was used on the data track 

presented in Figure 1. 

Experimental trials were conducted on the internal road network of the University of Mataram, which 

closely resembles the layout and topography of the Mandalika International Circuit. The test route included 

a combination of flat segments, gentle slopes, curves, and minor speed bumps, thereby simulating a typical 

low-speed urban environment [18, 19]. Three drivers participated in the test, each with no prior experience 

operating electric vehicles, to better reflect the natural variability in behavioral patterns. The vehicle was 

equipped with a handlebar-mounted throttle that provided drivers with direct manual control over the 

acceleration and speed. During the test sessions, no restrictions were imposed on driving speed, travel 

distance, or time duration, allowing each driver to operate the vehicle according to their instinctive behaviors. 

Energy consumption data were collected using onboard monitoring systems for each driving session. This 

fully open protocol enabled the observation of real-world behavioral tendencies and allowed for the 

quantification of how different driving styles influence energy usage in prototype EVs. 

  

Figure 1. Test setup and environment: (a) prototype electric vehicle used in the trials, and (b) experimental 

driving track located on the University of Mataram campus. 

2.2. Instruments and measurement parameters 

The experiment involved three distinct trials, with each driver (Drivers 1, 2, and 3) sequentially 

operating the electric vehicle under similar environmental and payload conditions. Upon completion of each 

trial, vehicle performance data were collected, resulting in nine measurement sets throughout the study. 

These datasets were acquired through onboard instruments, namely, a digital speedometer and a wattmeter, 

integrated into the prototype vehicle. 

The speedometer recorded the instantaneous velocity (km/h) and total travel distance, D (km), of the 

vehicle, whereas the wattmeter measured the real-time energy consumption, E (Wh), during each driving 

cycle. These recorded parameters were subsequently used to calculate the energy efficiency,  (km/kWh) 

and its inverse, specific energy consumption (SEC, in kWh/km), as outlined in Eq. (1) and (2). These 

efficiency metrics are widely adopted in EV performance assessments and have been used in previous studies 

to evaluate the operational viability and energy economy of electric vehicles [20].  

𝜂    =
𝐷

𝐸 
× 1000              (1) 

𝑆𝐸𝐶   =
𝐸

𝐷 
×

1

1000
             (2) 

In addition to basic performance monitoring, the wattmeter played a crucial role in quantifying total 

electrical energy expenditure during each session. This enabled a detailed assessment of the energy demand 

under varying speeds and behavioral conditions. The speedometer ensured accurate logging of speed profiles, 

which is essential for identifying the relationship between driving dynamics (e.g., smooth vs. abrupt 

acceleration) and overall energy efficiency. 
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A visual documentation of the measuring devices used in this study is presented in Figure 2, providing 

a clear overview of the experimental instrumentation setup. 

  

Figure 2. Insptrument test: (a) Measurement instruments used during testing: (a) digital speedometer for 

recording vehicle velocity, and (b) wattmeter for monitoring real-time energy consumption. 

3. Results and Discussions 

3.1. Driver-dependent energy efficiency in prototype electric vehicles 

The influence of driver behavior on energy efficiency was evident across all test scenarios involving 

the same electric vehicle prototype. With all drivers operating under nearly identical payload conditions—

Driver 1 with 122 kg, Driver 2 with 124 kg, and Driver 3 with 120 kg—the analysis isolates behavioral 

factors as the primary variable affecting performance. As shown in Table 1, Driver 1 consistently achieved 

moderate-to-high efficiency, with values ranging from 87.1 to 99.2 km/kWh. These outcomes suggest that 

Driver 1 maintained stable and efficient control over the vehicle, with consistent performance across various 

low-to-moderate speeds (36–39 km/h). 

In contrast, Driver 2 exhibited greater variability, with energy efficiency values ranging from 65.7 

to 86.2 km/kWh, despite operating within a similar speed range (22–47 km/h). The relatively low efficiency 

at a 2.3 km distance and 35 Wh energy consumption (65.7 km/kWh) may indicate less-efficient acceleration 

or an increased number of stop-and-go events. This fluctuation implies that energy performance can be 

compromised by inconsistent throttle control, late braking, or poor anticipation of road conditions, even 

under a constant vehicular mass. These findings are supported by Mamarikass et al. [21], who found that 

BEVs demonstrate optimal efficiency in low-speed urban environments owing to regenerative braking and 

high partial-load efficiency. In contrast, higher variability in speed and traffic congestion reduces the 

performance. Their analysis also indicates that traffic interventions, such as speed restrictions in urban zones, 

can yield average energy savings of up to 13% for BEVs; however, the benefits diminish when the speed 

increases beyond the optimal urban cruising range (~25–30 km/h). This reinforces the notion that steady, 

anticipatory driving at low-to-moderate speeds is ideal for maximizing the energy efficiency of BEVs. 

Driver 3, who operated consistently at low speeds (12–17.2 km/h) over short runs (~2.4 km per 

session), demonstrated the lowest absolute energy consumption (21–29 Wh). This outcome reflects the 

benefits of maintaining stable, low-speed profiles under light load (120 kg), which is supported by Jonas et 

al. [22], who found that traffic congestion adds 4–5% to energy consumption. Notably, beyond driving style, 

intelligent navigation and lane-selection strategies also significantly affect energy efficiency. Pan et al [23] 

demonstrated that using a PSO-LSTM-based lane-change decision algorithm—trained with V2X traffic 

data—enabled up to 27.2% reduction in EV energy consumption compared to fixed-lane driving, particularly 

in continuous lane-change scenarios in urban settings. These findings emphasize that the energy efficiency 

of EVs is strongly influenced by behavior-adaptive decision-making, including speed modulation, 



 
 

 

 

R. Bima et al.                                                                                         Jurnal Teknik Mesin Mechanical Xplore (JTMMX) Vo. 6, No. 1 (2025) 85-96 

89 

 

anticipation, and traffic-aware route optimization. Thus, a combination of smooth driving and intelligent 

navigation represents a promising approach to sustainable urban mobility. 

Table 1. Summary of driving test results: driver load, speed, distance, energy used, and calculated energy 

efficiency. 

Driver Load (kg) Speed (km/h) Load Speed 

ratio 

Distance (km) Energy 

(Wh) 

Energy Efficiency 

(km/kWh) 

D-1 122 36 3.40 2.70 31 87.1 

D-1 122 37 3.30 2.70 28 96.4 

D-1 122 39 3.13 13.00 131 99.2 

D-1 122 37 3.30 5.68 59 96.3 

D-1 122 37 3.30 11.30 118 95.8 

D-2 124 35 3.54 2.30 35 65.7 

D-2 124 38 3.263 13.00 167 77.8 

D-2 124 38 3.26 5.6.0 82 68.3 

D-2 124 47 2.64 13.70 159 86.2 

D-2 124 22 5.64 2.30 32 71.9 

D-3 120 16.2 7.42 2.40 29 82.8 

D-3 120 16.6 7.23 2.40 28 85.7 

D-3 120 17.2 6.98 2.40 26 92.3 

D-3 120 15.5 7.74 2.40 25 96.0 

D-3 120 12 10.00 2.40 21 114.3 

 

Overall, the results confirm that driver-specific factors, including pacing, responsiveness, and speed 

modulation, are critical in determining the effective range of electric vehicles. These behavioral elements, 

while often overlooked, represent a significant opportunity for intervention in future sustainable mobility 

strategies, particularly through eco-driving programs and feedback-based energy-management systems. The 

driver-specific speed behaviors of all drivers are illustrated in Figure 3. 

3.2. Interaction effects of load and speed on energy efficiency 

3.2.1. Actual energy consumption analysis 

Before evaluating how load and speed interact to influence energy efficiency, it is essential to examine 

the actual energy consumption values recorded during the tests, as summarized in Table 1. Driver 1 exhibited 

energy usage ranging from 28 to 131 Wh, demonstrating consistent throttle control and effective power 

management over varying travel distances. Despite operating under a moderate load (122 kg), this driver 

maintained a relatively modest energy draw, even on longer segments, which is consistent with studies 

showing that smooth acceleration and steady cruising significantly reduce EV energy consumption compared 

with aggressive driving patterns [11, 24, 25]. In contrast, Driver 2 recorded the highest energy usage (167 

Wh for a 13 km run) under similar operative conditions (124 kg load, 22–47 km/h speed). This 32–167 Wh 

variability suggests inefficiencies caused by erratic acceleration and frequent stop-start driving, 

corroborating the findings of Al-Wreikat et al. [20], who reported up to a 19% increase in specific energy 

consumption (SEC) when average speeds decreased, and more pronounced effects under stop-and-go urban 

traffic. Driver 3, who consistently operated at low speeds (12–17.2 km/h) and over short distances (2.4 km 

per session), demonstrated the lowest absolute energy consumption (21–29 Wh). This outcome reflects the 

benefits of maintaining stable low-speed driving profiles under light loads (120 kg). These findings are 

consistent with the results reported by Jonas et al. [22], who showed that traffic conditions significantly 
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affect EV efficiency, leading to approximately 4–5% additional energy consumption in high-traffic 

scenarios. Moreover, their analysis highlighted that avoiding traffic congestion could extend the battery 

electric vehicle (BEV) range by up to seven miles. This evidence underscores the value of eco-driving 

strategies, route optimization, and traffic-aware navigation as critical elements in reducing real-world energy 

consumption and enhancing EV performance. 

  

Figure 3. Mandalika Desantara Electric Prototype Vehicle 

3.2.2. Multivariate interaction of load and speed on efficiency 

Before evaluating how the load and speed interact to influence energy efficiency, it is important to 

examine the actual energy consumption values recorded during the tests. Table 1 shows that the energy usage 

of Driver 1 ranged from 28 to 131 Wh, demonstrating effective management of the power input over varying 

travel distances. Despite longer travel segments, this driver maintained a relatively modest energy draw per 

kilometer, reflecting consistent throttle control and a smooth driving style. In contrast, Driver 2 recorded the 

highest energy consumption in a single trial (167 Wh for 13 km), despite operating under a similar load and 

speed as Driver 1. This pattern, along with other sessions ranging between 32 and 167 Wh, suggests greater 

variability and potentially inefficient energy application due to abrupt acceleration or stop-and-go behaviors. 

Driver 3, who consistently operated at low speeds (12–17.2 km/h) and short distances (2.4 km/session), 

demonstrated the lowest absolute energy usage, ranging from 21–29 Wh. These results further affirm the 

energy-saving advantages of maintaining consistent low-speed driving profiles under light-load conditions. 

This analysis of raw energy consumption complements the earlier efficiency metrics by providing 

practical insights into the actual power requirements across different driving patterns. This provides a 

valuable foundation for the subsequent discussion on how the vehicle load and cruising speed interact to 

influence the energy efficiency of EVs. Beyond driver behavior, this study also examined how vehicle load 

and cruising speed interact to influence the energy consumption of prototype electric vehicles. The results 

demonstrated that the energy efficiency did not follow a simple linear relationship with either the load or 

speed. For instance, Driver 1, operating at a relatively high speed of 39 km/h with a 122 kg load, achieved a 

peak efficiency of 99.2 km/kWh with an overall average of 94.96 km/kWh. This indicates that the vehicle 

load alone does not necessarily impair performance, particularly when paired with efficient driving 

strategies, such as smooth acceleration and consistent cruising. In contrast, Driver 2, under a comparable 

load of 124 kg and cruising speed of 38 km/h, recorded a significantly lower peak efficiency of 68.3 km/kWh 

and an average of 73.98 km/kWh. This discrepancy underscores the critical influence of driving patterns, 
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particularly the need for anticipatory control and smooth speed transitions, in achieving optimal energy 

performance. Driver 3 demonstrated the highest efficiency performance, achieving a peak of 114.3 km/kWh 

and an average of 94.22 km/kWh, while consistently operating the vehicle at moderate speeds ranging from 

12.0 to 17.2 km/h under the lightest load condition (120 kg). These results highlight the potential for 

achieving near-optimal efficiency through stable low-load operation and careful speed control. However, 

such low-speed conditions may be impractical in real-world urban driving, where the dynamic traffic flow 

imposes constraints. Therefore, maintaining a cruising speed of approximately 13–15 km/h with smooth 

acceleration may provide a realistic balance between efficiency and operational feasibility. 

These findings are consistent with those of previous studies. Al-Wreikat et al. [20] analyzed real-world 

EV operation in Birmingham and found that aggressive driving behavior increased specific energy 

consumption (SEC) by up to 16% compared to passive driving, with more pronounced effects in short-

distance trips under 16 km. Additionally, the energy demand was shown to increase by up to 19% in dense 

urban traffic conditions, where frequent stops and lower average speeds were dominant. These observations 

support the high efficiency attained by Driver 3, whose consistent low-speed operation mirrored a passive 

and anticipatory driving style. Similarity Bingham et al. [8] demonstrated approximately 30% differences in 

energy consumption between aggressive and moderate driving styles using a Smart Fortwo EV across a 

40 km mixed-route trial. Kozłowski et al. [9] also emphasized the nonlinear influence of acceleration 

behavior and speed modulation on energy consumption. These insights collectively reinforce the notion that 

vehicle load and speed alone are insufficient to explain efficiency outcomes without accounting for driver 

behavior. Kozłowski et al. [9] also highlighted the nonlinear links between speed, acceleration patterns, and 

energy use. Such literature corroborates our findings, illustrating that vehicle load and speed alone cannot 

fully explain energy efficiency without considering the overlay of the driver’s behavior.  

Fiori et al. [26] developed a VT-CPEM model to simulate EV energy consumption using instantaneous 

speed and acceleration inputs. The model highlighted the role of regenerative braking efficiency and 

auxiliary loads (e.g., heating and cooling), which can increase the total energy demand by up to 32%. 

Notably, energy recovery during non-aggressive braking cycles in urban driving scenarios aligned with the 

high efficiency recorded in Driver 3’s performance, affirming the value of behaviorally adaptive driving in 

minimizing energy waste. The interaction effects among the load, speed, and efficiency of all drivers are 

illustrated in Figure 4. 

 
Figure 4. Interaction effects on energy efficiency: (a) scatter plot of vehicle load versus energy efficiency; 

(b) doughnut chart showing the contribution of cruising speed ranges to efficiency outcomes across drivers. 

3.3. Implications for Sustainable Urban Mobility 

The driver-specific speed behaviors relative to distance are illustrated in Figure 5. From an urban 
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sustainability perspective, these findings have significant implications. The data demonstrate that energy 

efficiency improvements of up to 28.4% can be achieved solely through behavioral optimization without 

requiring any modification to the vehicle hardware or control systems. This figure is derived from the 

observed difference between Driver 1 (94.96 km/kWh) and Driver 2 (73.98 km/kWh), the latter of whom 

was used as the baseline due to consistently lower and more variable energy efficiency. Similarly, Driver 3, 

operating under lighter loads and consistently low speeds, achieved an average efficiency of 94.22 km/kWh, 

representing a 27.4% improvement compared to Driver 2. These findings confirm that variations in driver 

behavior alone—such as smoother acceleration, better speed modulation, and anticipatory control—can 

produce efficiency gains ranging from 27% to 28.4% under otherwise comparable test conditions. 

.  

Figure 5. Scatter plot of driving distance versus cruising speed for all drivers, illustrating the variations in 

operational behavior during the test sessions. 

This presents a compelling opportunity for cities transitioning to electric mobility to recognize driver 

behavior as a key policy intervention. Eco-driving education programs and real-time feedback systems 

embedded in EV dashboards can significantly improve operational efficiency, particularly for public 

transport and commercial vehicle fleets. In addition, transportation planners and fleet managers can integrate 

driver profiling and behavior-based efficiency metrics into route planning, vehicle scheduling, and adaptive 

control systems. These insights also support the development of intelligent EV ecosystems incorporating 

features such as adaptive cruise control, energy-aware speed guidance, and AI-assisted driving modules 

aimed at maximizing efficiency. 

Despite these promising results, this study has certain limitations. The sample size was limited, and 

real-world variables such as traffic congestion, elevation changes, and weather conditions were not 

considered. Future research should address these factors using advanced telematics and data-driven models 

to assess energy performance in more dynamic and heterogeneous urban environments. Such efforts are 

crucial for developing robust behavior-based strategies that align with long-term sustainability objectives, as 

illustrated in Figure 6. Such efforts are crucial for developing robust behavior-based strategies that align with 

long-term sustainability objectives, as illustrated in Figure 6. The conceptual framework highlights how 

energy-efficient driving behavior can be systematically incorporated into urban electric mobility systems 

through the integration of eco-driving initiatives, behavioral monitoring, and intelligent feedback 

mechanisms. These approaches not only enhance the performance of individual vehicles but also support 

broader environmental and energy goals, particularly within the context of sustainable urban transportation 

planning. 
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Figure 6. Conceptual framework linking driver behavior, energy efficiency, and policy interventions for 

sustainable urban electric mobility. 

Such efforts are crucial for developing robust behavior-based strategies that align with long-term 

sustainability objectives, as illustrated in Figure 6. The conceptual framework highlights how energy-

efficient driving behavior can be systematically incorporated into urban electric mobility systems through 

the integration of eco-driving initiatives, behavioral monitoring, and intelligent feedback mechanisms. These 

approaches not only enhance the performance of individual vehicles but also support broader environmental 

and energy goals, particularly within the context of sustainable urban transportation planning. 

4. Conclusions 

This study quantitatively evaluated the effects of driver behavior, vehicle load, and cruising speed on 

the energy efficiency of a prototype electric vehicle. Across nine test sessions involving three drivers under 

controlled conditions, notable performance differences were observed, despite the comparable technical 

setups. 

– Driver 1, with a load of 122 kg, recorded an average energy efficiency of 94.96 km/kWh, peaking 

at 99.2 km/kWh. 

– Driver 2, under a similar 124 kg load, exhibited the lowest efficiency, averaging 73.98 km/kWh, 

with a minimum of 65.7 km/kWh. 

– Driver 3, operating at lower speeds (12.0–17.2 km/h) and carrying the lightest load (120 kg), 

achieved the highest average efficiency of 94.22 km/kWh, with a peak of 114.3 km/kWh. 

– In terms of actual energy consumption, Driver 1 used 28–131 Wh per session, whereas Driver 2 

consumed up to 167 Wh, the highest recorded. Driver 3 maintained the most consistent energy 

use, ranging from 21–29 Wh, indicating a strong correlation between smooth low-speed driving 

and minimal power draw. 

– Overall, efficient driving behavior—marked by gradual acceleration, consistent speed, and 

anticipatory control—resulted in up to 30.1% improvement in energy efficiency, based on the 

relative gain from Driver 2’s minimum to Driver 3’s maximum performance. These findings 

underscore the significance of behavioral factors, which can rival or even surpass mechanical 

optimization in enhancing the performance of electric vehicles. 

From a policy and system design perspective, these insights advocate the adoption of eco-driving 

training, real-time feedback systems, and driver behavior analytics as cost-effective strategies to improve 

fleet-level energy efficiency. Future studies should incorporate larger sample sizes and variable real-world 

conditions to refine the predictive models for electric mobility in dynamic urban settings.. 
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