PENINGKATAN DISOLUSI ETIL P-METOKSISINAMAT MELALUI KOKRISTALISASI DENGAN ASAM TARTRAT: EVALUASI MULTI-PH UNTUK OPTIMALISASI BIOAVAILABILITAS ORAL

Penulis

  • Revika Rachmaniar Sekolah Tinggi Farmasi Indonesia, Bandung, Jawa Barat, Indonesia
  • Rival Ferdiansyah Sekolah Tinggi Farmasi Indonesia, Bandung, Jawa Barat, Indonesia
  • Fauzan Ahmad Mudzakkir Sekolah Tinggi Farmasi Indonesia, Bandung, Jawa Barat, Indonesia
  • Nela Simanjuntak Sekolah Tinggi Farmasi Indonesia, Bandung, Jawa Barat, Indonesia

DOI:

https://doi.org/10.36805/h8y2bs27

Kata Kunci:

Etil p-metoksisinamat, Asam tartrat, Kokristal, Disolusi, Bioavailabilitas

Abstrak

Etil p-metoksisinamat (EPMS) adalah senyawa bioaktif dari rimpang kencur dengan aktivitas antiinflamasi dan antikanker yang potensial sebagai kandidat obat baru. Namun, kelarutan rendah EPMS (128,1 mg/L) yang termasuk BCS kelas II membatasi laju disolusi dan bioavailabilitasnya. Penelitian ini bertujuan meningkatkan laju disolusi EPMS melalui pembentukan kokristal dengan asam tartrat, serta menentukan rasio koformer optimal dan kondisi pH yang memberikan peningkatan disolusi paling besar. Kokristal EPMS-asam tartrat dibuat menggunakan metode solvent drop grinding dengan rasio stoikiometri 1:1, 1:2, dan 1:3. Uji disolusi partikulat dilakukan menggunakan alat disolusi tipe II dalam tiga media dapar (HCl pH 1,2; asetat pH 4,5; fosfat pH 6,8) pada suhu 37±0,5°C selama 60 menit (n=3). Kokristal rasio 1:3 dalam medium HCl pH 1,2 memberikan hasil terbaik dengan peningkatan disolusi hingga 8,5 kali lipat dibandingkan EPMS murni (p<0,05). Peningkatan signifikan juga terjadi pada semua media pH yang diuji. Kokristalisasi dengan asam tartrat berhasil meningkatkan disolusi EPMS secara signifikan pada semua kondisi pH, dengan potensi meningkatkan bioavailabilitas oral EPMS sebagai kandidat obat antiinflamasi

Referensi

Aitipamula, S. et al. (2012) ‘Polymorphs, Salts, and Cocrystals: What ’ s in a Name?’

Albetawi, S. et al. (2021) ‘Recent solubility and dissolution enhancement techniques for repaglinide a BCS class II drug: a review’, Pharmacia, 68(3), pp. 573–583.

Amidon, G.L. et al. (1995) ‘A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability’, Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, pp. 413–420.

Avdeef, A. (2003) Absorption and Drug Development: Solubility, Permeability, and Charge State, John Wiley & Sons, Hoboken.

Bavishi, D.D. and Borkhataria, C.H. (2016) ‘Spring and parachute: How cocrystals enhance solubility’, Progress in Crystal Growth and Characterization of Materials, 62(3), pp. 1–8. Available at: https://doi.org/10.1016/j.pcrysgrow.2016.07.001.

Blagden, N. et al. (2007) ‘Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates’, Advanced Drug Delivery Reviews, 59(7), pp. 617–630.

Brittain, H.G. (2019) ‘Cocrystal Systems of Pharmaceutical Interest: 2012–2014’, Profiles of Drug Substances, Excipients and Related Methodology, 44, pp. 415–443.

Desiraju, G.R. (2013) ‘Crystal engineering: From molecule to crystal’, Journal of the American Chemical Society, 135(27), pp. 9952–9967.

Dressman, J. and Krämer, J. (2005) Pharmaceutical dissolution testing, Pharmaceutical Dissolution Testing. Available at: https://doi.org/10.1016/0168-3659(94)90064-7.

Duggirala, N.K. et al. (2016) ‘Pharmaceutical cocrystals: Along the path to improved medicines’, Chemical Communications, 52(4), pp. 640–655.

Ekowati, J., Widowati, R. and Isadiartuti, D. (2017) ‘Preparation of an inclusion complex system of ethyl p-methoxycinnamate - hydroxypropyl-β-cyclodextrin: Characterization and solubility evaluation’, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(1), pp. 1486–1494.

Good, D.J. (2009) ‘Solubility Advantage of Pharmaceutical Cocrystals’, pp. 21–24.

Jessica, A. et al. (2025) ‘Solid Dispersion of Ethyl P-Methoxycinnamate (Epmc) From Kaempferia Galanga Rhizome By Freeze-Drying Method’, International Journal of Applied Pharmaceutics, 17(Special Issue 1), pp. 1–7.

Kalantzi, L. et al. (2006) ‘Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies’, Pharmaceutical Research, 23(1), pp. 165–176.

Karimi-Jafari, M. et al. (2018) ‘Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications’, Crystal Growth and Design, 18(10), pp. 6370–6387.

Kuminek, G. et al. (2016) ‘Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5’, Advanced Drug Delivery Reviews, 101, pp. 143–166.

Rachmaniar, R. et al. (2020) ‘Pharmaceutical Cocrystal of Ethyl p-Methoxycinnamate: Formulation and Characterization’, Advances in Health Sciences Research, 26, pp. 96–101.

Rachmaniar, R. et al. (2022) ‘Solubility enhancement of ethyl p-methoxycinnamate under nanoscale confinement’, Journal of Chinese Pharmaceutical Sciences, 31(6), pp. 461–470.

Sasaki, Y. et al. (2025) ‘Ethyl p-methoxycinnamate inhibits tumor growth by suppressing of fatty acid synthesis and depleting ATP’, Scientific Reports, 15(1), pp. 1–15.

Savjani, K.T., Gajjar, A.K. and Savjani, J.K. (2012) ‘Drug Solubility: Importance and Enhancement Techniques’, ISRN Pharmaceutics, 2012(100 mL), pp. 1–10.

Serajuddin, A.T.M. (2007) ‘Salt formation to improve drug solubility’, Advanced Drug Delivery Reviews, 59(7), pp. 603–616.

Sulaiman, M.R. et al. (2008) ‘Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models’, Journal of Natural Medicines, 62(2), pp. 221–227.

Thakuria, R. et al. (2013) ‘Pharmaceutical cocrystals and poorly soluble drugs Ranjit’, International Journal of Pharmaceutics, 1(1), pp. 1–11.

Umar, M. et al. (2014) ‘Ethyl-p-methoxycinnamate isolated from kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions’, Clinics, 69(2), pp. 134–144.

Vertzoni, M. et al. (2005) ‘Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds’, European Journal of Pharmaceutics and Biopharmaceutics, 60(3), pp. 413–417.

Wardhana, Y.W. et al. (2025) ‘Modifications evaluation of ethyl para methoxycinnamate crystal with enhanced solubility properties by solvent-mediated polymorphism and multicomponent interactions’, Journal of Medicinal and Pharmaceutical Chemistry Research, 7(5), pp. 894–905.

Weyna, D.R. et al. (2009) ‘Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: Mechanochemistry vs slow evaporation from solution’, Crystal Growth and Design, 9(2), pp. 1106–1123

Diterbitkan

2025-11-30