PEMANFAATAN SENYAWA METABOLIT SEKUNDER KAWISTA (Limonia acidissima) UNTUK PENGELOLAAN DIABETES: TINJAUAN ANALISIS JEJARING FARMAKOLOGI

  • Dina Siti Rahma M. Hentu Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Malang
  • M. Artabah Muchlisin Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Malang, Malang, Jawa Timur, Indonesia
  • Ahmad Shobrun Jamil Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Malang, Malang, Jawa Timur, Indonesia
  • Engrid Juni Astuti Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Malang, Malang, Jawa Timur, Indonesia
  • Agustin Rafikayanti Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Muhammadiyah Malang, Malang, Jawa Timur, Indonesia
Keywords: network pharmacology, kawista, Limonia acidissima, MCC

Abstract

This study aims to explore the potential of secondary metabolite compounds from the kawista plant (Limonia acidissima) as antidiabetic agents through an in silico approach. We utilized pharmacological network analysis and analysis of the most important proteins to identify potential protein targets and signaling pathways involved in diabetes regulation. The analysis revealed that secondary metabolite compounds from kawista have the potential to affect various crucial aspects of glucose and lipid metabolism in the body, including through interactions with key proteins such as AKT1. These findings provide new insights into the development of additional therapies for diabetes treatment, and demonstrate the potential of in silico methods in accelerating the discovery and development of new drugs.

References

Ahmed, B., Sultana, R., and Greene, M.W. Adipose Tissue and Insulin Resistance in Obese. Biomedicine and Pharmacotherapy. 2021, 137, 1-13.

Albury-Warren, T.M., Pandey, V., Spinel, L.P., Masternak, M.M., and Altomare, D.A. Prediabetes Linked to Excess Glucagon in Transgenic Mice with Pancreatic Active AKT1. Journal of Endocrinology. 2016, 228(1), 49-59.

Aleksander, S.A., Balhoff, J., Carbon, S., Cherry, J.M., Drabkin, H.J., Ebert, D., et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023, 224(1), iyad031.

Al-Ishaq, R.K., Abotaleb, M., Kubatka, P., Kajo. K., and Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019, 9(9),1-35.

Alkandahri, M.Y., Sujana, D., Hasyim, D.M., Shafirany, M.Z., Sulastri, L., Arfania, M., et al. Antidiabetic Activity of Extract and Fractions of Castanopsis costata Leaves on Alloxan-induced Diabetic Mice. Pharmacognosy Journal. 2021, 13(6)Suppl, 1589-1593.

Bechmann, L.P., Hannivoort, R.A., Gerken, G., Hotamisligil, G.S., Trauner, M., and Canbay, A. The Interaction of Hepatic Lipid and Glucose Metabolism in Liver Diseases. Journal of Hepatology. 2012, 56(4), 952-964.

Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T., and Lin, C.Y. CytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology. 2014, 8(4), 1-7.

Daina, A., Michielin, O., and Zoete, V. Swiss Target Prediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Research. 2019, 47(W1), W357-W3664.

Dhakar, A., Chorotiya, P., Meena, M., Singh, C., Purvia, R.P., and Adlakha, M.K. Pharmacological Properties and Phytochemical of Limonia acidissima: A Review. World Journal of Pharmaceutical Research. 2019, 8(10), 637-645.

Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., Fakhri, F., et al. AMPK Signaling in Diabetes Mellitus, Insulin Resistance and Diabetic Complications: A Pre-Clinical and Clinical Investigation. Biomedicine and Pharmacotherapy. 2022, 146(112563), 1-17.

Galsgaard, K.D., Pedersen, J., Knop, F.K., Holst, J.J., and Albrechtsen, N.J.W. Glucagon Receptor Signaling and Lipid Metabolism. Frontiers in Physiology. 2019, 10(413), 1-11.

Grabner, G. F., Xie, H., Schweiger, M., and Zechner, R. Lipolysis: Cellular Mechanisms for Lipid Mobilization from Fat Stores. Nature Metabolism. 2021, 3(11), 1445-1465.

Gunawan, I.P.W., Santoso, P., Pramitha, D.A.I., dan Adrianta, K.A. Uji Aktivitas Antiinflamasi serta Toksisitas Senyawa Eristrophine Terhadap Reseptor Prostaglandin Sintase 2 (PTGS2) Secara In Silico. USADHA: Integrasi Obat Tradisional. 2021, 1(1), 1-8.

Hopkins, A.L. Network Pharmacology: The Next Paradigm In Drug Discovery. Nature Chemical Biology. 2008, 4(11), 682-690.

International Diabetes Federation. 2019. IDF Diabetes Atlas (Ninth Edit). International Diabetes Federation. https://diabetesatlas.org/atlas-reports/.

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., and Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Research. 2023, 51(D1), D587-D592.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. PubChem 2023 update. Nucleic Acids Research. 2023, 51(D1), D1373-D1380.

Lena, N., Jamil, A.S., Muchlisin, M.A., dan Almuhtarihan, I.F. Analisis Jejaring Farmakologi Tanaman Jati Belanda (Guazuma ulmifolia Lamk.) Sebagai Imunomodulator. Journal of Islamic Pharmacy. 2023, 8(1), 1-6.

Makatita, F.A., Wardhani, R., dan Nuraini. Riset In Silico dalam Pengembangan Sains di Bidang Pendidikan, Studi Kasus: Analisis Potensi Cendana Sebagai Agen Anti-Aging. Jurnal Abdi. 2020, 2(1), 59-67.

Murthy, H.N., and Dalawai, D. 2020. Bioactive Compounds of Wood Apple (Limonia acidissima L.). In H. N. Murthy & V. A. Bapat (Eds.), Bioactive Compounds in Underutilized Fruits and Nuts (pp. 543-569). Springer Nature Switzerland.

Oliveros, J.C. 2015. Venny. An interactive tool for comparing lists with Venn’s diagrams.

Prastiwi, L.D., dan Haryoto. Isolasi dan Identifikasi Ekstrak Etanol Kulit Batang Kawista (Limonia acidissima L.). Medical Sains: Jurnal Ilmiah Kefarmasian. 2023, 8(2), 597-604.

Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T.I., Dahary, D., et al. The GeneCards Suite. Practical Guide to Life Science Databases. 2022, 27-56.

Sakurai, Y., Kubota, N., Yamauchi, T., and Kadowaki, T. Role of Insulin Resistance in MAFLD. International Journal of Molecular Sciences. 2021, 22(8), 1-26.

Saltiel, A.R. Insulin Signaling In Health and Disease. The Journal of clinical investigation. 2021, 131(1), 1-12.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. Cytoscape: A Software Environment for Integrated Models. Genome Research. 2003, 13, 2498-2503.

Susanto, A.F.F.S., Jamil, A.S., Muchlisin, M.A., and Almuhtarihan, I.F. A Network Pharmacology of Brotowali (Tinospora cordifolia) on Immunity Cases. Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR). 2023, 3, 29-37.

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. The STRING database in 2023: Protein-protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research. 2023, 51(1D), D638-D646.

Ye, X.W., Wang, H.L., Cheng, S.Q., Xia, L.J., Xu, X.F., and Li, X.R. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Coptidis Rhizoma for the Treatment of Alzheimer’s Disease. Frontiers in Aging Neuroscience. 2022, 14(June), 1-19.

Zhang, H., Ma, J., Tang, K., and Huang, B. Beyond Energy Storage: Roles of Glycogen Metabolism in Health and Disease. FEBS Journal. 2021, 288(12), 3772-3783.

Zhong, S., Tian, L., Li, C., Storch, K.F., and Wong, W.H. Comparative Analysis of Gene Sets In The Gene Ontology Space Under The Multiple Hypothesis Testing Framework. Proceedings-2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004, 425-435.

Published
2024-05-30