ANALISIS POTENSI DAUN TORBANGUN (Plectranthus amboinicus) SEBAGAI ANTIBAKTERI TERHADAP Klebsiella pneumoniae SECARA IN SILICO

  • Nabila Nur Nafiati Program Sarjana Sekolah Kedokteran Hewan dan Biomedis, Institut Pertanian Bogor
  • Rini Madyastuti Purwono Sub-divisi Farmasi Veteriner, Departemen Klinik, Reproduksi, dan Patologi, Sekolah Kedokteran Hewan dan Biomedis, Institut Pertanian Bogor
  • Nurhidayat Nurhidayat Divisi Anatomi, Histologi, dan Embriologi, Departemen Anatomi, Fisiologi, dan Farmakologi, Sekolah Kedokteran Hewan dan Biomedis, Institut Pertanian Bogor
  • Laksmi Ambarsari Departemen Biokimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor
Keywords: Antibiotic resistant, docking, Indian borage, Klebsiella pneumoniae

Abstract

Antibiotic-resistant is a global issue. Klebsiella pneumoniae has high priority to find its antibiotic because it has extended-spectrum beta-lactamase (ESBL) enzyme that makes the bacteria easy to resist the antibiotic. The study of phytochemicals in medicinal plants is one of the efforts to find antibiotics. Indrulizia is one of the empirical medicinal plants containing flavonoids used to treat disease. The aim of this study was to analyze the potential of borage as an antibacterial agent against Klebsiella pneumoniae in silico. Docking is the method for this study using AutoDock Vina. This is an application for docking the enzyme ESBL from K. pneumoniae, referred to as SHV (sulfhydryl variable), and the metabolite second from plants. The parameters analyzed were binding free energies, inhibition constants and visualization in 3D and 2D. The free energy of binding and the inhibition constant of the native ligand are -6.7 kcal/mol and 12.118 μM. The binding free energy values ​​of apigenin 7-glucuronide and rosmarinic acid show higher potencies than the native ligand of SHV-1 (1,4-thiazepine).

References

Chaves, J., Ladona, M.G., Segura, C., Coira, A., Reig, R., and Ampurdanés, C. SHV-1 β-Lactamase is Mainly a Chromosomally Encoded Species-Specific Enzyme in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45(10): 2856-2861.

Gafur, A., Sukamdani, G.Y., Kristi, N., Maruf, A., Xu, J., Chen, X., et al. From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance. J. Mater. Chem. B. 2020, 8(43): 9825-9835.

Grosdidier, A., Zoete, V., and Michielin, O. EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins Struct. Funct. Bioinforma. 2007, 67(4): 1010-1025.

Kellenberger, E., Schalon, C., and Rognan, D. How to measure the similarity between protein ligand-binding site? Curr. Comput. Aided. Drug Des. 2008, 4(3): 1-12.

Kitagawa, K., Shigemura, K., Yamamichi, F., Alimsardjono, L., Rahardjo, D., Kuntaman, K., et al. International comparison of causative bacteria and antimicrobial susceptibilities of urinary tract infections between Kobe, Japan, and Surabaya, Indonesia. Jpn. J. Infect. Dis. 2018, 71(1): 8- 13.

Kuzin, A.P., Nukaga, M., Nukaga, Y., Hujer, A.M., Bonomo, R.A., and Knox, J.R. Structure of the SHV-1 β-lactamase. Biochem. 1999, 38(18): 5720-5727.

Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004, 1(4):337-341.

Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development q settings. Advanced Drug Delivery Reviews. 2001, 46(1-3): 3-26.

McWhirter, C. 2021. Chapter One - Kinetic mechanisms of covalent inhibition. Di dalam: Ward, R.A., Grimster NPBT-AR in MC, editor. The Design of Covalent-Based Inhibitors. Vol. 56. Academic Press. Halaman. 1-31.

Munadi, E. 2017. Tanaman obat, sebuah tinjauan singkat. Di dalam: Salim, Z., Munadi, E., editor. Info Komoditi Tanaman Obat. Jakarta: Badan Pengkajian dan Pengembangan Perdagangan. Halaman. 1-7.

Nasution, N., Siregar, L.A., Bayu, E.S. Karakteristik pertumbuhan vegetatif dari beberapa aksesi tanaman Bangun-bangun (Plectranthus amboinicus (Lour.) Spreng). J. Agroekoteknologi FP USU. 2017, 5(1): 26-32.

Nirwati, H., Sinanjung, K., Fahrunissa, F., Wijaya, F., Napitupulu, S., Hati VP, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019, 13(S11): 1-8.

Nukaga, M., Abe, T., Venkatesan, A.M., Mansour, T.S, Bonomo R.A, and Knox, J.R. Inhibition of class A and class C β-lactamases by penems: Crystallographic structures of a novel 1,4-thiazepine intermediate. Biochem. 2003, 42(45): 13152-13159.

Nusantoro, Y.R., dan Fadlan, A. Analisis sifat mirip obat, prediksi ADMET, dan penambatan molekular isatinil-2-aminobenzoilhidrazon dan kompleks logam transisi Co(II), Ni(II), Cu(II), Zn(II) Terhadap BCL2-XL. Akta Kim. Indones. 2020, 5(2): 114-126.

Rajasekharan, S.K., Ramesh, S., Satish, A.S., and Lee, J. Antibiofilm and anti-β- lactamase activities of Burdock root extract and chlorogenic acid against Klebsiella pneumoniae. J. Microbiol. Biotechnol. 2017, 27(3): 542-551.

Setzer, M.S., Sharifi-Rad, J., and Setzer, W. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics. 2016, 5(3): 1-113.

Sivaranjani, D., Saranraj, P., Manigandan, M., and Amala, K. Antimicrobial activity of Plectranthus amboinicus solvent extracts against human pathogenic bacteria and fungi. J. Drug Deliv. Ther. 2019, 9(3): 36-39.

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic- resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18(3): 318-327.

Vargas, J.A.R., Lopez, A.G., Piñol, M.C., and Froeyen, M. Molecular docking study on the interaction between 2-substituted-4,5-difuryl imidazoles with different protein target for antileishmanial activity. J. Appl. Pharm. Sci. 2018, 8(3):14-22.

Published
2023-05-28