Analisis Kelayakan Pemberian Kredit Nasabah Koperasi Menggunakan Algoritma C4.5

  • Rudi Setiawan Universitas Trilogi
Keywords: Algoritma C4.5, Analisis Kelayakan Kredit

Abstract

Kegiatan Analisa terhadap permohonan pinjaman kredit di koperasi merupkan hal yang penting dilakukan agar tidak terjadi penunggakan pembayaran angsuran dikemudian hari oleh para nasabah, hasil analisa kelayakan pemberian pinjaman menjadi penentu atas permohonan pinjaman yang diajukan, berbagai metode analisa dilakukan untuk memprediksi kelayakan pemberian pinjaman kredit, pada penelitian ini dilakukan analisa kelayakan pemberian pinjaman menggunakan algoritma C4.5, algoritma C4.5 merupakan pengembangan dari algoritma ID3. Pengumpulan data dilakukan di Koperasi simpan pinjam Posdaya melati bukit duri, data diolah menggunakan tools RapidMiner, hasil analisis menunjukkan Area Under Curve yang optimis sebesar 0.971 ini menunjukkan hasil klasifikasi berada pada kategori sangat baik.

References

[1] BPS, 2018. Profile Kemiskinan di Indonesia Maret 2018, Berita resmi statistik No.57/07/Th.XXI.
[2] J. R. Brown, J. A. Cookson and R. Z. Heimer, “Growing up without finance”, Journal of Financial Economics, vol. 134, issue 3, pp. 591-616, December 2019,
[3] T. P. Silva, et al, “Financial and economic performance of major Brazilian credit cooperatives”, Contaduría y Administración, vol. 62, issue 5, Pages 1442-1459, December 2017.
[4] UUD 1945 Pasal 33 Ayat 1
[5] M. S. Henock, “Financial sustainability and outreach performance of saving and credit cooperatives: The case of Eastern Ethiopia”, Asia Pacific Management Review, vol. 24, issue 1, pp. 1-9, March 2019,
[6] R, Setiawan, U. A, Faruq, “Sistem Informasi Koperasi Taburpuja Berbasis Tanggung Renteng”, Jurnal Sistem Informasi dan Sains Teknologi, vol. 1, issue. 1, Februari 2019.
[7] D. McKillop, et al, “Cooperative financial institutions: A review of the literature”, International Review of Financial Analysis, vol. 71, October 2020, doi:10.1016/j.irfa.2020.101520
[8] S. Anna, K. Boris and W. Ivana, “Impact of credit risk management”, 4th World Conference on Business, Economics and Managemen, Procedia Economics and Finance, vol. 26, pp. 325 – 331, 2015.
[9] P. Adamko, T. Kliestik, M. Birtus, “History of credit risk models”. 2nd international conference on economics and social science, Information Engineering Research Institute, pp. 148-153.
[10] K. K. Lai, L. Yu, L. Zhou, S. Wang, “Credit Risk Evaluation with Least Square Support Vector Machine”, International Conference on Rough Sets and Knowledge Technology, RSKT 2006: Rough Sets and Knowledge Technology, vol. 4062, pp 490-495.
[11] O. O, Odeh, A.M, Featherstone, S. Das. “Predicting credit default: Comparative results from an artificial neural network, logistic regression and adaptive neuro-fuzzy inference system”, International Research Journal of Finance and Economics vol. 42, pp. 7-18, January 2010.
[12] G. Caruso, et al, “Cluster Analysis for mixed data: An application to credit risk evaluation”, Socio-Economic Planning Sciences, Available online 13 April 2020, Article 100850
[13] D. Buc, T. Kliestik, “Aspects of statistics in terms of financial modelling and risk”. Proceeding of the 7th International Days of Statistics and Economics, pp. 215- 224, Prague. 2013.
[14] Y. Jiang, “Credit Scoring Model Based on Decision Tree and the Simulated Annealing Algorithm”. World Congress on Computer Science and Information Engineering, pp. 18 – 22. Los Angeles: IEEE Computer Society. 2009.
[15] J. R. Quinlan, C4.5: Programs for Machine Learning, USA: Morgan Kaufmann, 1993.
[16] J. Han and M. Kamber, Data Mining Concept and Tehniques. San Fransisco: Morgan Kauffman. 2006.
[17] F. Gorunescu, Data Mining: Concept, Models and Techniques, Springer-Verlag Berlin Heidelberg, 2011. DOI. 10.1007/978-3-642-19721-5
Published
2020-11-11